Content-adaptive Efficient Transformer for No-Reference Underwater Image Quality Assessment

被引:0
|
作者
Zhu, Pengli [1 ,2 ]
Ma, Huan [1 ]
Ma, Kuangqi [1 ]
Liu, Yancheng [1 ]
Liu, Siyuan [1 ]
机构
[1] Dalian Maritime Univ, Coll Marine Engn, Dalian, Peoples R China
[2] Natl Univ Singapore, Coll Design & Engn, Singapore 119077, Singapore
来源
OCEANS 2024 - SINGAPORE | 2024年
关键词
Underwater image; image quality assessment; efficient transformer; multi-scale feature;
D O I
10.1109/OCEANS51537.2024.10682304
中图分类号
P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
No-reference underwater image quality assessment (NR-UIQA) is a fundamental yet challenging task in ocean engineering field. Current methodologies for NR-UIQA, particularly those employing convolutional neural networks (CNNs), commonly leverage deeply-stacked convolutional layers to capture local features associated with image quality. However, these CNNs-methods often neglect the significance of non-local information. To overcome this limitation, we propose an innovative solution: an end-to-end content-adaptive efficient transformer (CET) designed specifically for NR-UIQA. The CET comprises a multi-scale feature extraction (MFE) backbone module and an adaptive quality regression (AQR) module. This architecture allows for the adaptive evaluation of image quality by dynamically adjusting the weights and biases of fully-connected layers within the AQR module, enhancing generalizability across diverse underwater environments. Experimental findings substantiate the superiority of CET over existing methods, showcasing its state-of-the-art accuracy and efficiency on publicly available datasets.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] A no-reference underwater image quality evaluator via quality-aware features
    Zhang, Siqi
    Li, Yuxuan
    Tan, Lu
    Yang, Huan
    Hou, Guojia
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2023, 97
  • [22] No-reference screen content image quality assessment based on multi-region features
    Xuhao Jiang
    Liquan Shen
    Liangwei Yu
    Mingxing Jiang
    Guorui Feng
    NEUROCOMPUTING, 2020, 386 : 30 - 41
  • [23] No-Reference Image Quality Assessment for Image Auto-Denoising
    Kong, Xiangfei
    Yang, Qingxiong
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2018, 126 (05) : 537 - 549
  • [24] Adaptive Hypergraph Convolutional Network for No-Reference 360-degree Image Quality Assessment
    Fu, Jun
    Hou, Chen
    Zhou, Wei
    Xu, Jiahua
    Chen, Zhibo
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 961 - 969
  • [25] CNN Based No-Reference HDR Image Quality Assessment
    Kefeng, Fan
    Jiyun, Liang
    Fei, Li
    Puye, Qiu
    CHINESE JOURNAL OF ELECTRONICS, 2021, 30 (02) : 282 - 288
  • [26] No-Reference Quality Assessment for Contrast-Distorted Image
    Wu, Jun
    Xia, Zhaoqiang
    Ren, Yifeng
    Li, Huifang
    2016 SIXTH INTERNATIONAL CONFERENCE ON IMAGE PROCESSING THEORY, TOOLS AND APPLICATIONS (IPTA), 2016,
  • [27] No-reference image quality assessment using fusion metric
    Jayashri V. Bagade
    Kulbir Singh
    Y. H. Dandawate
    Multimedia Tools and Applications, 2020, 79 : 2109 - 2125
  • [28] No-reference image quality assessment based on sparse representation
    Yang, Xichen
    Sun, Quansen
    Wang, Tianshu
    NEURAL COMPUTING & APPLICATIONS, 2019, 31 (10) : 6643 - 6658
  • [29] No-reference image quality assessment based on sparse representation
    Xichen Yang
    Quansen Sun
    Tianshu Wang
    Neural Computing and Applications, 2019, 31 : 6643 - 6658
  • [30] Exploiting Neural Models for No-reference Image Quality Assessment
    Pan, Cenhui
    Xu, Yi
    Yan, Yichao
    Gu, Ke
    Yang, Xiaokang
    2016 30TH ANNIVERSARY OF VISUAL COMMUNICATION AND IMAGE PROCESSING (VCIP), 2016,