NODAL SETS AND CONTINUITY OF EIGENFUNCTIONS OF KREIN-FELLER OPERATORS

被引:0
|
作者
Ngai, Sze-man [1 ,2 ,3 ]
Zhang, Meng-ke [1 ]
Zhao, Wen-quan [1 ]
机构
[1] Hunan Normal Univ, Coll Math & Stat, Key Lab High Performance Comp & Stochast Informat, HPCSIP,Minist Educ China, Changsha 410081, Hunan, Peoples R China
[2] Georgia Southern Univ, Dept Math Sci, Statesboro, GA 30460 USA
[3] Beijing Inst Math Sci & Applicat, Beijing 101400, Peoples R China
基金
中国国家自然科学基金;
关键词
Krein-Feller operators; nodal set; continuous eigenfunctions; SELF-SIMILAR MEASURES; DIMENSIONAL FRACTAL LAPLACIANS; SPECTRAL ASYMPTOTICS; EIGENVALUE BEHAVIOR; LINE; PROOF;
D O I
10.58997/ejde.2025.12
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let be a compactly supported positive finite Borel measure on R-d. Let 0 < lambda(1) <= lambda(2)<= center dot center dot center dot be eigenvalues of the Krein-Feller operator triangle(mu). We prove that, on a bounded domain, the nodal set of a continuous an-eigenfunction of a Krein-Feller operator divides the domain into at least 2 and at most n + r(n - 1) sub domains, where r(n) is the multiplicity of lambda(n). This work generalizes the nodal set theorem of the classical Laplace operator to Krein-Feller operators on bounded domains. We also prove that on bounded domains on which the classical Green function exists, the eigenfunctions of a Krein-Feller operator are continuous.
引用
收藏
页码:1 / 25
页数:25
相关论文
共 50 条