DFCDR: Domain-Aware Feature Decoupling and Fusion for Cross-Domain Recommendation

被引:0
|
作者
Wei, Jinyue [1 ]
Kou, Yue [1 ]
Shen, Derong [1 ]
Nie, Tiezheng [1 ]
Li, Dong [2 ]
机构
[1] Northeastern Univ, Shenyang 110004, Peoples R China
[2] Liaoning Univ, Shenyang 110036, Peoples R China
来源
WEB INFORMATION SYSTEMS AND APPLICATIONS, WISA 2024 | 2024年 / 14883卷
基金
中国国家自然科学基金;
关键词
Cross-domain recommendation; contrastive learning; feature decoupling; adaptive feature fusion;
D O I
10.1007/978-981-97-7707-5_12
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cross-Domain Recommendation (CDR) has indisputably proven its efficacy in alleviating the challenge of data sparsity in Recommender Systems. However, introducing domain-specific preferences from the source domain can introduce irrelevant information to the target domain. Furthermore, directly combining domain-general and domain-specific information may hinder the performance of the target domain. In this paper, we propose a domain-aware feature decoupling and fusion framework for CDR (DFCDR), which enables CDR more trustworthy and accurate. Specifically, we first design a user-level differential privacy method to protect users' privacy within each domain. Then we propose a contrastive learning-based feature decoupling method that achieves two pivotal goals: disentangling users' domain-specific preferences from their domain-general preferences, as well as differentiating between the popular and non-popular features of items. Finally, we present an adaptive feature fusion strategy that leverages a gating network to effectively fuse users' domain-general and domain-specific features in the target domain. We conduct extensive experiments on two real-world datasets. The results demonstrate the effectiveness of our proposed method.
引用
收藏
页码:138 / 149
页数:12
相关论文
共 50 条
  • [41] Modeling Domains as Distributions with Uncertainty for Cross-Domain Recommendation
    Zhu, Xianghui
    Jin, Mengqun
    Zhang, Hengyu
    Meng, Chang
    Zhang, Daoxin
    Li, Xiu
    PROCEEDINGS OF THE 47TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2024, 2024, : 2517 - 2521
  • [42] Cross-domain Recommendation via Dual Adversarial Adaptation
    Su, Hongzu
    Li, Jingjing
    Du, Zhekai
    Zhu, Lei
    Lu, Ke
    Shen, Heng Tao
    ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2024, 42 (03)
  • [43] A deep selective learning network for cross-domain recommendation
    Liu, Huiting
    Liu, Qian
    Li, Peipei
    Zhao, Peng
    Wu, Xindong
    APPLIED SOFT COMPUTING, 2022, 125
  • [44] Low-dimensional Alignment for Cross-Domain Recommendation
    Wang, Tianxin
    Zhuang, Fuzhen
    Zhang, Zhiqiang
    Wang, Daixin
    Zhou, Jun
    He, Qing
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 3508 - 3512
  • [45] Cross-domain recommendation based on latent factor alignment
    Yu, Xu
    Hu, Qiang
    Li, Hui
    Du, Junwei
    Gao, Jia
    Sun, Lijun
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (05) : 3421 - 3432
  • [46] Cross-Domain Item Recommendation Based on User Similarity
    Xu, Zhenzhen
    Jiang, Huizhen
    Kong, Xiangjie
    Kang, Jialiang
    Wang, Wei
    Xia, Feng
    COMPUTER SCIENCE AND INFORMATION SYSTEMS, 2016, 13 (02) : 359 - 373
  • [47] DisenCDR: Learning Disentangled Representations for Cross-Domain Recommendation
    Cao, Jiangxia
    Lin, Xixun
    Cong, Xin
    Ya, Jing
    Liu, Tingwen
    Wang, Bin
    PROCEEDINGS OF THE 45TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '22), 2022, : 267 - 277
  • [48] An improved cross-domain sequential recommendation model based on intra-domain and inter-domain contrastive learning
    Ni, Jianjun
    Shen, Tong
    Zhao, Yonghao
    Tang, Guangyi
    Gu, Yang
    COMPLEX & INTELLIGENT SYSTEMS, 2024, 10 (06) : 7877 - 7892
  • [49] Selective Knowledge Transfer for Cross-Domain Collaborative Recommendation
    Zhang, Hongwei
    Kong, Xiangwei
    Zhang, Yujia
    IEEE ACCESS, 2021, 9 : 48039 - 48051
  • [50] Discerning Canonical User Representation for Cross-Domain Recommendation
    Zhao, Siqian
    Sahebi, Sherry
    PROCEEDINGS OF THE EIGHTEENTH ACM CONFERENCE ON RECOMMENDER SYSTEMS, RECSYS 2024, 2024, : 318 - 328