DFCDR: Domain-Aware Feature Decoupling and Fusion for Cross-Domain Recommendation

被引:0
|
作者
Wei, Jinyue [1 ]
Kou, Yue [1 ]
Shen, Derong [1 ]
Nie, Tiezheng [1 ]
Li, Dong [2 ]
机构
[1] Northeastern Univ, Shenyang 110004, Peoples R China
[2] Liaoning Univ, Shenyang 110036, Peoples R China
来源
WEB INFORMATION SYSTEMS AND APPLICATIONS, WISA 2024 | 2024年 / 14883卷
基金
中国国家自然科学基金;
关键词
Cross-domain recommendation; contrastive learning; feature decoupling; adaptive feature fusion;
D O I
10.1007/978-981-97-7707-5_12
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cross-Domain Recommendation (CDR) has indisputably proven its efficacy in alleviating the challenge of data sparsity in Recommender Systems. However, introducing domain-specific preferences from the source domain can introduce irrelevant information to the target domain. Furthermore, directly combining domain-general and domain-specific information may hinder the performance of the target domain. In this paper, we propose a domain-aware feature decoupling and fusion framework for CDR (DFCDR), which enables CDR more trustworthy and accurate. Specifically, we first design a user-level differential privacy method to protect users' privacy within each domain. Then we propose a contrastive learning-based feature decoupling method that achieves two pivotal goals: disentangling users' domain-specific preferences from their domain-general preferences, as well as differentiating between the popular and non-popular features of items. Finally, we present an adaptive feature fusion strategy that leverages a gating network to effectively fuse users' domain-general and domain-specific features in the target domain. We conduct extensive experiments on two real-world datasets. The results demonstrate the effectiveness of our proposed method.
引用
收藏
页码:138 / 149
页数:12
相关论文
共 50 条
  • [31] Dynamics-Aware Adaptation for Reinforcement Learning Based Cross-Domain Interactive Recommendation
    Wu, Junda
    Xie, Zhihui
    Yu, Tong
    Zhao, Handong
    Zhang, Ruiyi
    Li, Shuai
    PROCEEDINGS OF THE 45TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '22), 2022, : 290 - 300
  • [32] Fusion of single-domain contrastive embedding and cross-domain graph collaborative filtering network for recommendation systems
    Huang, Zhenzhen
    Zhu, Dongqing
    Xiao, Shuo
    INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS, 2024,
  • [33] Inter- and Intra-Domain Relation-Aware Heterogeneous Graph Convolutional Networks for Cross-Domain Recommendation
    Wang, Ke
    Zhu, Yanmin
    Liu, Haobing
    Zang, Tianzi
    Wang, Chunyang
    Liu, Kuan
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, DASFAA 2022, PT II, 2022, : 53 - 68
  • [34] Deep User Rating Pattern Mining and Fusion Inference Method for Cross-Domain Recommendation
    Zhang, Fan
    Xiong, Yingying
    Shi, Peng
    Ding, Lianhong
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 269
  • [35] Cross-domain collaborative recommendation without overlapping entities based on domain adaptation
    Hongwei Zhang
    Xiangwei Kong
    Yujia Zhang
    Multimedia Systems, 2022, 28 : 1621 - 1637
  • [36] Decoupled domain-specific and domain-conditional representation learning for cross-domain recommendation
    Zhang, Yu
    Cheng, Zhiyong
    Liu, Fan
    Yang, Xun
    Peng, Yuxin
    INFORMATION PROCESSING & MANAGEMENT, 2024, 61 (03)
  • [37] Personalized Transfer of User Preferences for Cross-domain Recommendation
    Zhu, Yongchun
    Tang, Zhenwei
    Liu, Yudan
    Zhuang, Fuzhen
    Xie, Ruobing
    Zhang, Xu
    Lin, Leyu
    He, Qing
    WSDM'22: PROCEEDINGS OF THE FIFTEENTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, 2022, : 1507 - 1515
  • [38] Cross-domain collaborative recommendation without overlapping entities based on domain adaptation
    Zhang, Hongwei
    Kong, Xiangwei
    Zhang, Yujia
    MULTIMEDIA SYSTEMS, 2022, 28 (05) : 1621 - 1637
  • [39] Deep Graph Mutual Learning for Cross-domain Recommendation
    Wang, Yifan
    Li, Yongkang
    Li, Shuai
    Song, Weiping
    Fan, Jiangke
    Gao, Shan
    Ma, Ling
    Cheng, Bing
    Cai, Xunliang
    Wang, Sheng
    Zhang, Ming
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, DASFAA 2022, PT II, 2022, : 298 - 305
  • [40] A personalized cross-domain recommendation with federated meta learning
    Zhao, Peng
    Jin, Yuanyang
    Ren, Xuebin
    Li, Yanan
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (28) : 71435 - 71450