Moderate red wine alleviates high-fat diet-induced atherosclerosis in ApoE-/- mice via modulations of liver metabolism through gut microbiota remodeling

被引:0
|
作者
Chen, Xuanxuan [1 ]
Yang, Hong [1 ,2 ]
Li, Kaikai [1 ,2 ,3 ]
Cao, Jianhong [4 ]
Xu, Xiaoyun [1 ,2 ,3 ]
Pan, Siyi [1 ,2 ,3 ]
Li, Erhu [1 ,2 ,3 ]
机构
[1] Huazhong Agr Univ, Coll Food Sci & Technol, Wuhan 430070, Peoples R China
[2] Huazhong Agr Univ, Minist Educ, Key Lab Environm Correlat Dietol, Wuhan 430070, Peoples R China
[3] Huazhong Agr Univ, Hubei Key Lab Fruit & Vegetable Proc & Qual Contro, Wuhan 430070, Peoples R China
[4] Shangri La Winery Co Ltd, Diqing 674412, Peoples R China
基金
中国国家自然科学基金;
关键词
Wine; Atherosclerosis; Gut microbiota; Untargeted metabolomics; Short chain fatty acids; CHOLESTEROL-METABOLISM; CARDIOVASCULAR-DISEASE; HAMSTER MODEL; POLYPHENOLS; CONSUMPTION; INHIBITION; ACIDS; CELL; INFLAMMATION; RESVERATROL;
D O I
10.26599/FSHW.2024.9250087
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Red wine has a good potential for alleviating atherosclerosis, but the mechanisms related to hepatointestinal circulation remain to be elucidated. This study showed that administration of a high-polyphenol red wine (16 mL/(kg<middle dot>day)) for 16 weeks significantly reduced the atherosclerotic lesion in high-fat diet-fedApoE-/-mice. The total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) levels of plasma were lowered by 11.54% and 18.98%. The pro-inflammatory cytokines including interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-alpha) levels were decreased by 27.59% and 31.92%. Red wine also reduced triglyceride (TG) level and lipid deposition in the liver, and increased the concentration of total bile acids (TBA). Untargeted metabolomics analysis indicated that red wine modulated the disorder of liver metabolism by regulating sphingolipid signaling pathway, sphingolipid metabolism, glycerophosphlipid metabolism, choline metabolism and bile secretion. 16S rRNA sequencing revealed that red wine increased the abundance of Akkermansia and Bifi dobacterium and reduced the abundance of Mucispirillum, Romboutsia, Lactobacillus, Bilophila and Blautia, along with the increased concentrations of short-chain fatty acids (SCFAs) in feces. These findings indicated that red wine could exert anti-atherosclerotic effect by regulating gut microbiota, restoring SCFAs, alleviating liver metabolic disorders. (c) 2025 Beijing Academy of Food Sciences. Publishing services by Tsinghua University Press. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Glutamine Ameliorates Liver Steatosis via Regulation of Glycolipid Metabolism and Gut Microbiota in High-Fat Diet-Induced Obese Mice
    Zhou, Xinbo
    Zhang, Junjie
    Sun, Yutong
    Shen, Jian
    Sun, Bo
    Ma, Qingquan
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2023, 71 (42) : 15656 - 15667
  • [22] Genistein alleviates neurodegeneration in ApoE-/- mice fed a high-fat diet
    Kwon, Young Hye
    Park, Youn-Jin
    Jeon, Sookyoung
    FASEB JOURNAL, 2013, 27
  • [23] Er-Chen Decoction Alleviates High-Fat Diet-Induced Nonalcoholic Fatty Liver Disease in Rats through Remodeling Gut Microbiota and Regulating the Serum Metabolism
    Miao, Jing
    Guo, Liying
    Cui, Huantian
    Wang, Li
    Zhu, Bo
    Lei, Jinyan
    Li, Peng
    Jia, Jianwei
    Zhang, Zhaiyi
    EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE, 2022, 2022
  • [24] Effects of high-fat diet on lipid metabolism in ApoE-/- mice
    Xu, S.
    Li, L.
    Yang, G.
    DIABETOLOGIA, 2010, 53
  • [25] Puerin III alleviates glucose and lipid metabolism disorders in high-fat high-sucrose diet-induced hyperlipidemic and hyperglycemic ApoE-/- mice
    Gu, Xiaopan
    Meng, Yingxin
    Jin, Fengyu
    Wang, Lingxiao
    Ma, Jiale
    Wang, Xinyu
    Zhao, Yimu
    Shi, Jingjing
    Li, Jun
    Zhao, Yunfang
    Tu, Pengfei
    Zheng, Jiao
    JOURNAL OF FUNCTIONAL FOODS, 2022, 93
  • [26] Allicin Improves Metabolism in High-Fat Diet-Induced Obese Mice by Modulating the Gut Microbiota
    Shi, Xin'e
    Zhou, Xiaomin
    Chu, Xinyi
    Wang, Jie
    Xie, Baocai
    Ge, Jing
    Guo, Yuan
    Li, Xiao
    Yang, Gongshe
    NUTRIENTS, 2019, 11 (12)
  • [27] Longxuetongluo capsule inhibits atherosclerosis progression in high-fat diet-induced ApoE-/- mice by improving endothelial dysfunction
    Zheng, Jiao
    Liu, Binglin
    Lun, Qixing
    Gu, Xiaopan
    Pan, Bo
    Zhao, Yunfang
    Xiao, Wei
    Li, Jun
    Tu, Pengfei
    ATHEROSCLEROSIS, 2016, 255 : 156 - 163
  • [28] Gypenoside XLIX Ameliorate High-Fat Diet-Induced Atherosclerosis via Regulating Intestinal Microbiota, Alleviating Inflammatory Response and Restraining Oxidative Stress in ApoE-/- Mice
    Gao, Ming
    Heng, Xing
    Jin, Jing
    Chu, Weihua
    PHARMACEUTICALS, 2022, 15 (09)
  • [29] Bamboo shoot dietary fiber alleviates gut microbiota dysbiosis and modulates liver fatty acid metabolism in mice with high-fat diet-induced obesity
    Zhou, Xiaolu
    Ma, Lingjun
    Dong, Li
    Li, Daotong
    Chen, Fang
    Hu, Xiaosong
    FRONTIERS IN NUTRITION, 2023, 10
  • [30] Heat-treated high-fat diet modifies gut microbiota and metabolic markers in apoe-/- mice
    Marungruang, Nittaya
    Fak, Frida
    Tareke, Eden
    NUTRITION & METABOLISM, 2016, 13