Multirepresentation Dynamic Adaptive Network for Cross-Domain Rolling Bearing Fault Diagnosis in Complex Scenarios

被引:0
|
作者
Zeng, Yi [1 ]
Sun, Bowen [1 ]
Xu, Renyi [2 ]
Qi, Guopeng [3 ]
Wang, Feiyang [1 ]
Zhang, Zhengzhuang [1 ]
Wu, Kelin [4 ]
Wu, Dazhuan [1 ]
机构
[1] Zhejiang Univ, Inst Adv Equipment, Hangzhou 310027, Peoples R China
[2] Nucl Power Inst China, Chengdu 610213, Peoples R China
[3] Fujian Fuqing Nucl Power Co Ltd, Fuqing 350318, Peoples R China
[4] Zhejiang Univ, Coll Ocean Engn, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Feature extraction; Rolling bearings; Cyclostationary process; Fault diagnosis; Vibrations; Data mining; Frequency modulation; Attention mechanisms; Training; Adaptive systems; Attention mechanism; class imbalance; cross-machine fault diagnosis; domain adaptation (DA); multirepresentation operation; transfer learning (TL); ADAPTATION;
D O I
10.1109/TIM.2025.3550622
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Recently, cross-domain fault diagnosis employing transfer learning methods has made remarkable outcomes. However, many existing methods struggle to perform satisfactorily when confronted with class imbalance, different fault severities, and daunting cross-machine tasks. To deal with these challenges, the multirepresentation dynamic adaptive network (MDAN) is proposed in this work. The main contributions of the MDAN include three aspects. First, a novel cyclic frequency-domain attention mechanism (CFDAM) is constructed to enhance the rolling bearings' key state information expression. Second, a multirepresentation operation is proposed to generate different feature subspaces, enabling the extraction of more comprehensive features across various scales. Third, the domain adaptation module incorporates the dynamic factor with a normalized weighting (NW) strategy to adaptively evaluate the relative importance of marginal and conditional distribution alignment. Specifically, through cyclostationary analysis, the states of rolling bearings are first characterized by spectral coherence (SCoh) maps. Then, the transferable features extracted by the CFDAM-based feature extraction network are aligned dynamically in respective subspaces based on multikernel maximum mean discrepancy (MK-MMD). Ultimately, the feature vectors from different subspaces are concatenated for label prediction. The effectiveness of the proposed MDAN was validated by the Case Western Reserve University (CWRU) rolling bearing dataset and two self-conducted rolling bearing datasets (obtained from rotor rolling bearing testbed and centrifugal pump testbed). The superiority of MDAN is also demonstrated by the comparison with several state-of-the-art methods.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] A deep adaptive network for cross-domain bearing fault diagnosis
    Xia Y.
    Xu W.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2022, 41 (03): : 45 - 53and81
  • [2] ISEANet: An interpretable subdomain enhanced adaptive network for unsupervised cross-domain fault diagnosis of rolling bearing
    Liu, Bin
    Yan, Changfeng
    Liu, Yaofeng
    Lv, Ming
    Huang, Yuan
    Wu, Lixiao
    ADVANCED ENGINEERING INFORMATICS, 2024, 62
  • [3] Multisource cross-domain fault diagnosis of rolling bearing based on subdomain adaptation network
    Wang, Zhichao
    Huang, Wentao
    Chen, Yi
    Jiang, Yunchuan
    Peng, Gaoliang
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (10)
  • [4] Dynamic Reweighted Domain Adaption for Cross-Domain Bearing Fault Diagnosis
    Meng, Yu
    Xuan, Jianping
    Xu, Long
    Liu, Jie
    MACHINES, 2022, 10 (04)
  • [5] Domain adaptive deep belief network for rolling bearing fault diagnosis
    Che, Changchang
    Wang, Huawei
    Ni, Xiaomei
    Fu, Qiang
    COMPUTERS & INDUSTRIAL ENGINEERING, 2020, 143
  • [6] Deep Domain Generalization Combining A Priori Diagnosis Knowledge Toward Cross-Domain Fault Diagnosis of Rolling Bearing
    Zheng, Huailiang
    Yang, Yuantao
    Yin, Jiancheng
    Li, Yuqing
    Wang, Rixin
    Xu, Minqiang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [7] Transfer multiscale adaptive convolutional neural network for few-shot and cross-domain bearing fault diagnosis
    Li, Fan
    Wang, Liping
    Wang, Decheng
    Wu, Jun
    Zhao, Hongjun
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (12)
  • [8] A new multichannel deep adaptive adversarial network for cross-domain fault diagnosis
    Han, Baokun
    Xing, Shuo
    Wang, Jinrui
    Zhang, Zongzhen
    Bao, Huaiqian
    Zhang, Xiao
    Jiang, Xingwang
    Liu, Zongling
    Yang, Zujie
    Ma, Hao
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (06)
  • [9] Cross-domain intelligent fault diagnosis of rolling bearing based on distance metric transfer learning
    Zhou, Hongdi
    Huang, Tao
    Li, Xixing
    Zhong, Fei
    ADVANCES IN MECHANICAL ENGINEERING, 2022, 14 (11)
  • [10] Fault diagnosis of rolling bearing based on cross-domain divergence alignment and intra-domain distribution alienation
    Zhao, Shubiao
    Wang, Guangbin
    Li, Xuejun
    Chen, Jinhua
    Jiang, Lingli
    JOURNAL OF VIBROENGINEERING, 2023, 25 (06) : 1124 - 1140