Machine learning for human mobility during disasters: A systematic literature review

被引:1
|
作者
Gunkel, Jonas [1 ]
Muehlhauser, Max [2 ]
Tundis, Andrea [1 ]
机构
[1] Inst Protect Terr Infrastructures, German Aerosp Ctr DLR, Rathausallee 12, D-53757 St Augustin, Germany
[2] Tech Univ Darmstadt TU Darmstadt, Dept Comp Sci, Hochschulstr 10, D-64289 Darmstadt, Germany
关键词
Human mobility; Disaster mobility; Disaster response; Machine learning; Deep Learning; NEURAL-NETWORKS; PREDICTION;
D O I
10.1016/j.pdisas.2025.100405
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Understanding and predicting human mobility during disasters is crucial for effective disaster management. Knowledge about population locations can greatly enhance rescue missions and evacuations. Realistic models that reflect observable mobility patterns and volumes are crucial for estimating population locations. However, existing models are limited in their applicability to disasters, as they are typically restricted to describing regular mobility patterns. Machine learning models trained to capture patterns observable in provided training data also face this limitation. The necessity of large amounts of training data for machine learning models, coupled with the scarcity of data on mobility in disasters, often constrains the feasibility of their training. Various strategies have been developed to overcome this issue, which we present and discuss in this systematic literature review. Our review aims to support and accelerate the synthesis of novel approaches by establishing a knowledge base for future research. This review identified a condensed field of related contributions exhibiting high methodology and context diversity. We classified and analyzed the relevant contributions based on their proposed approach and subsequently discussed and compared them qualitatively. Finally, we elaborated on general challenges and highlighted areas for future research.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] MACHINE LEARNING IMPLEMENTATION IN LUNG CANCER PREDICTION - A SYSTEMATIC LITERATURE REVIEW
    Oentoro, Janice
    Prahastya, Rafif
    Pratama, Rendy
    Meiliana
    Fajar, Muhamad
    2023 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE IN INFORMATION AND COMMUNICATION, ICAIIC, 2023, : 435 - 439
  • [32] A Systematic Literature Review of Machine Learning Applications for Port's Operations
    Mekkaoui, Sara E.
    Benabbou, Loubna
    Berrado, Abdelaziz
    GOL'20: 2020 5TH INTERNATIONAL CONFERENCE ON LOGISTICS OPERATIONS MANAGEMENT (GOL), 2020, : 28 - 32
  • [33] Hybrid approaches to optimization and machine learning methods: a systematic literature review
    Azevedo, Beatriz Flamia
    Rocha, Ana Maria A. C.
    Pereira, Ana I.
    MACHINE LEARNING, 2024, 113 (07) : 4055 - 4097
  • [34] A systematic review of literature on credit card cyber fraud detection using machine and deep learning
    Btoush, Eyad Abdel Latif Marazqah
    Zhou, Xujuan
    Gururajan, Raj
    Chan, Ka Ching
    Genrich, Rohan
    Sankaran, Prema
    PEERJ COMPUTER SCIENCE, 2023, 9
  • [35] Convergence of Gamification and Machine Learning: A Systematic Literature Review
    Khakpour, Alireza
    Colomo-Palacios, Ricardo
    TECHNOLOGY KNOWLEDGE AND LEARNING, 2021, 26 (03) : 597 - 636
  • [36] Cyberbullying detection and machine learning: a systematic literature review
    Balakrisnan, Vimala
    Kaity, Mohammed
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (SUPPL 1) : 1375 - 1416
  • [37] Has the Flood Entered the Basement? A Systematic Literature Review about Machine Learning in Laboratory Medicine
    Ronzio, Luca
    Cabitza, Federico
    Barbaro, Alessandro
    Banfi, Giuseppe
    DIAGNOSTICS, 2021, 11 (02)
  • [38] Application of machine learning and deep learning techniques on reverse vaccinology – a systematic literature review
    Alashwal, Hany
    Kochunni, Nishi Palakkal
    Hayawi, Kadhim
    Soft Computing, 2025, 29 (01) : 391 - 403
  • [39] Systematic reviews of machine learning in healthcare: a literature review
    Kolasa, Katarzyna
    Admassu, Bisrat
    Holownia-Voloskova, Malwina
    Kedzior, Katarzyna J.
    Poirrier, Jean-Etienne
    Perni, Stefano
    EXPERT REVIEW OF PHARMACOECONOMICS & OUTCOMES RESEARCH, 2024, 24 (01) : 63 - 115
  • [40] Crop mapping using supervised machine learning and deep learning: a systematic literature review
    Alami Machichi, Mouad
    Mansouri, Loubna El
    Imani, Yasmina
    Bourja, Omar
    Lahlou, Ouiam
    Zennayi, Yahya
    Bourzeix, Francois
    Hanade Houmma, Ismaguil
    Hadria, Rachid
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2023, 44 (08) : 2717 - 2753