We study the interplay between Sabbah's mixed Hodge structure for tame regular functions and Ehrhart theory for polytopes. We first analyze the Poincar & eacute; polynomial of the Hodge filtration of this mixed Hodge structure (we call this Poincar & eacute; polynomial the theta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document}-vector). Using the symmetry of the Hodge numbers involved, we show that it shares many properties with the h & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h<^>*$$\end{document}-vector of a polytope. For instance, we define from the theta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document}-vector the Hodge-Ehrhart polynomial of a general tame function and we show that it satisfies a reciprocity law, analogous to the one satisfied by the Ehrhart polynomial of a polytope. We study the roots of this Hodge-Ehrhart polynomial, in particular their distribution around some critical lines. Using techniques coming from singularity theory, we also show a Thom-Sebastiani type theorem for the theta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document}-vector. Finally, we offer some linear inequalities among the coefficients of the theta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document}-vectors which could be helpful to test if a polynomial is a theta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document}-vector or not. In the very particular case of convenient and nondegenerate Laurent polynomials, we show (using the Brieskorn lattice and the V-filtration) that the previous results agree with the classical ones in combinatorics and we emphasize various combinatorial properties of Sabbah's Hodge numbers: on the way, this provides an alternative interpretation of prior results about the (limit) Hodge numbers of hypersurfaces in a torus obtained in a different framework by Danilov-Khovanskii and more recently by Katz-Stapledon.