From Hodge Theory for Tame Functions to Ehrhart Theory for Polytopes

被引:0
作者
Douai, Antoine [1 ]
机构
[1] Univ Cote Azur, CNRS, LJAD, Nice, France
关键词
Mixed Hodge structures; Hodge numbers; Graded Milnor rings; Polytopes; Ehrhart polynomials; Poincar & eacute; series; POLYNOMIALS; COHOMOLOGY; GEOMETRY; NUMBERS; SPACES; ROOTS;
D O I
10.1007/s00026-024-00738-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the interplay between Sabbah's mixed Hodge structure for tame regular functions and Ehrhart theory for polytopes. We first analyze the Poincar & eacute; polynomial of the Hodge filtration of this mixed Hodge structure (we call this Poincar & eacute; polynomial the theta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document}-vector). Using the symmetry of the Hodge numbers involved, we show that it shares many properties with the h & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h<^>*$$\end{document}-vector of a polytope. For instance, we define from the theta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document}-vector the Hodge-Ehrhart polynomial of a general tame function and we show that it satisfies a reciprocity law, analogous to the one satisfied by the Ehrhart polynomial of a polytope. We study the roots of this Hodge-Ehrhart polynomial, in particular their distribution around some critical lines. Using techniques coming from singularity theory, we also show a Thom-Sebastiani type theorem for the theta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document}-vector. Finally, we offer some linear inequalities among the coefficients of the theta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document}-vectors which could be helpful to test if a polynomial is a theta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document}-vector or not. In the very particular case of convenient and nondegenerate Laurent polynomials, we show (using the Brieskorn lattice and the V-filtration) that the previous results agree with the classical ones in combinatorics and we emphasize various combinatorial properties of Sabbah's Hodge numbers: on the way, this provides an alternative interpretation of prior results about the (limit) Hodge numbers of hypersurfaces in a torus obtained in a different framework by Danilov-Khovanskii and more recently by Katz-Stapledon.
引用
收藏
页数:31
相关论文
共 46 条
[1]  
Beck M, 2005, CONTEMP MATH, V374, P15
[2]  
Beck M., 2007, Computing the continuous discretely
[3]   LATTICE POINTS IN LATTICE POLYTOPES [J].
BETKE, U ;
MCMULLEN, P .
MONATSHEFTE FUR MATHEMATIK, 1985, 99 (04) :253-265
[4]   Notes on the roots of Ehrhart polynomials [J].
Bey, Christian ;
Henk, Martin ;
Wills, Joerg M. .
DISCRETE & COMPUTATIONAL GEOMETRY, 2007, 38 (01) :81-98
[5]   The orbifold Chow ring of toric Deligne-Mumford stacks [J].
Borisov, LA ;
Chen, L ;
Smith, GG .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 18 (01) :193-215
[6]  
Braun B, 2006, ELECTRON J COMB, V13
[7]   MILNOR NUMBERS AND THE TOPOLOGY OF POLYNOMIAL HYPERSURFACES [J].
BROUGHTON, SA .
INVENTIONES MATHEMATICAE, 1988, 92 (02) :217-241
[8]   Weighted projective spaces and reflexive simplices [J].
Conrads, H .
MANUSCRIPTA MATHEMATICA, 2002, 107 (02) :215-227
[9]  
Danilov VI., 1986, Izv. Akad. Nauk SSSR Ser. Mat, V50, P925
[10]  
Deligne P., 1971, Publications Mathematiques de l'IHES, V40, P5, DOI 10.1007/BF02684692