GDM-YOLO: A Model for Steel Surface Defect Detection Based on YOLOv8s

被引:1
|
作者
Zhang, Tinglin [1 ]
Pang, Huanli [1 ]
Jiang, Changhong [2 ]
机构
[1] Changchun Univ Technol, Coll Comp Sci & Engn, Changchun 130012, Peoples R China
[2] Changchun Univ Technol, Grad Sch Changchun Univ Technol, Changchun 130012, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Feature extraction; Accuracy; Defect detection; Steel; Convolutional neural networks; YOLO; Surface morphology; Surface treatment; Production; Computational modeling; Reparameterization; surface defect detection; steel strips;
D O I
10.1109/ACCESS.2024.3476908
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Steel materials are extensively used across various industries. Detecting surface defects in steel strips during production processes is crucial. Existing steel surface defect detection methods exhibit inadequate accuracy and excessive computational complexity, posing challenges for real-time industrial deployment. In this paper, a novel model is designed named GDM-YOLO, specifically tailored for steel surface defect detection tasks, built upon the YOLOv8s network. Firstly, the Space-to-Depth Ghost Convolution (SPDG) downsampling module is introduced and used in the backbone network, aimed at minimizing information loss during downsampling operations while optimizing computational efficiency. Secondly, this work introduces the C2f-Dilated-Reparam-Block (C2f-DRB) module, leveraging reparameterization and large kernel convolutions to enhance feature extraction capabilities without compromising inference costs. Lastly, the novel Multiscale Feature Enhancement Block (MFEB) module was designed, to enhance the small target detection layer by integrating multi-scale feature fusion, further improving detection accuracy. Experimental results demonstrate a 3% improvement in detection accuracy on the NEU-DET dataset compared to the baseline YOLOv8s model. Our approach achieves superior detection performance while reducing parameter requirements and computational complexity, meeting the real-time demands of steel surface defect detection in industrial production.
引用
收藏
页码:148817 / 148825
页数:9
相关论文
共 50 条
  • [21] An Improved YOLOv8 Model for Strip Steel Surface Defect Detection
    Wang, Jinwen
    Chen, Ting
    Xu, Xinke
    Zhao, Longbiao
    Yuan, Dijian
    Du, Yu
    Guo, Xiaowei
    Chen, Ning
    APPLIED SCIENCES-BASEL, 2025, 15 (01):
  • [22] Steel surface defect detection algorithm based on ESI-YOLOv8
    Zhang, Xinrong
    Wang, Yanlong
    Fang, Huaisong
    MATERIALS RESEARCH EXPRESS, 2024, 11 (05)
  • [23] Metal surface defect detection using SLF-YOLO enhanced YOLOv8 model
    Yuan Liu
    Yilong Liu
    Xiaoyan Guo
    Xi Ling
    Qingyi Geng
    Scientific Reports, 15 (1)
  • [24] Steel Surface Defect Detection Technology Based on YOLOv8-MGVS
    Zeng, Kai
    Xia, Zibo
    Qian, Junlei
    Du, Xueqiang
    Xiao, Pengcheng
    Zhu, Liguang
    METALS, 2025, 15 (02)
  • [25] Surface Defect Detection of Steel Plate Based on SKS-YOLO
    Zhou, Shiyang
    Ao, Siming
    Yang, Zhiying
    Liu, Huaiguang
    IEEE ACCESS, 2024, 12 : 91499 - 91510
  • [26] Subsea Nodule Recognition and Deployment Detection Method Based on Improved YOLOv8s
    Li, Jixin
    Li, Junchao
    Su, Bin
    Cui, Yuxin
    IEEE ACCESS, 2025, 13 : 70533 - 70547
  • [27] A Detection Algorithm for Surface Defects of Printed Circuit Board Based on Improved YOLOv8
    Yao, Lei
    Zhao, Bing
    Wang, Xihui
    Mei, Sihan
    Chi, Yulun
    IEEE ACCESS, 2024, 12 : 170227 - 170242
  • [28] LSKA-YOLOv8: A lightweight steel surface defect detection algorithm based on YOLOv8 improvement
    Tie, Jun
    Zhu, Chengao
    Zheng, Lu
    Wang, Haijiao
    Ruan, Chongwei
    Wu, Mian
    Xu, Ke
    Liu, Jiaqing
    ALEXANDRIA ENGINEERING JOURNAL, 2024, 109 : 201 - 212
  • [29] Textile Defect Detection Algorithm Based on the Improved YOLOv8
    Song, Wenfei
    Lang, Du
    Zhang, Jiahui
    Zheng, Meilian
    Li, Xiaoming
    IEEE ACCESS, 2025, 13 : 11217 - 11231
  • [30] SURFACE DEFECT DETECTION OF STEEL BASED ON IMPROVED YOLOv7 MODEL
    Teng, W. Z.
    Zhang, Y. J.
    Zhang, H. G.
    Gao, D. X.
    METALURGIJA, 2024, 63 (3-4): : 399 - 402