ON THE NEW k-BIVARIATE MITTAG-LEFFLER FUNCTION

被引:0
|
作者
Jafari, Hossein [1 ,2 ,3 ,4 ]
Meddahi, Meryem [5 ]
Golanbar, Javad ebadpour [6 ]
Nguyen, Van thinh [7 ]
机构
[1] Duy Tan Univ, Inst Res & Dev, Da Nang, Vietnam
[2] Duy Tan Univ, Sch Engn & Technol, Da Nang, Vietnam
[3] Univ South Africa, Dept Math Sci, UNISA0003, Pretoria, South Africa
[4] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
[5] Univ Hassiba Ben Bouali, Fac Technol, Chlef, Algeria
[6] Payame Noor Univ Tehran, Dept Sci, Tehran, Iran
[7] Seoul Natl Univ, Dept Civil & Environm Engn, Seoul, South Korea
关键词
Bivariate Mittag-Leffler Function; Special Functions; Integral Representaions; Recurrence Relations; Fractional Calculus; General Transform; GAMMA-FUNCTION;
D O I
10.1142/S0218348X25401206
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A new analog formula of the bivariate Mittag-Leffler function is presented in this work. We prove some relationships with known special functions, integral representations and recurrence relations. Also, we study some further interesting properties of the given function including the general transform and fractional calculus. Finally, a new integral operator is investigated.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Numerical evaluation of Mittag-Leffler functions
    William McLean
    Calcolo, 2021, 58
  • [22] NUMERICAL ALGORITHM FOR CALCULATING THE GENERALIZED MITTAG-LEFFLER FUNCTION
    Seybold, Hansjoerg
    Hilfer, Rudolf
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 47 (01) : 69 - 88
  • [23] Remark on a Mittag-Leffler function of Le Roy type
    Simon, Thomas
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2022, 33 (02) : 108 - 114
  • [24] On a New Definition of Fractional Differintegrals with Mittag-Leffler Kernel
    Fernandez, Arran
    Baleanu, Dumitru
    FILOMAT, 2019, 33 (01) : 245 - 254
  • [25] Sum of series and new relations for Mittag-Leffler functions
    Deif, Sarah A.
    de Oliveira, E. Capelas
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2024, 27 (04) : 1734 - 1758
  • [26] Computing the Matrix Mittag-Leffler Function with Applications to Fractional Calculus
    Roberto Garrappa
    Marina Popolizio
    Journal of Scientific Computing, 2018, 77 : 129 - 153
  • [27] Generalized convolution properties based on the modified Mittag-Leffler function
    Srivastava, H. M.
    Kilicman, Adem
    Abdulnaby, Zainab E.
    Ibrahim, Rabha W.
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (08): : 4284 - 4294
  • [28] The Prabhakar or three parameter Mittag-Leffler function: Theory and application
    Garra, Roberto
    Garrappa, Roberto
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 56 : 314 - 329
  • [29] A generalized Mittag-Leffler function to describe nonexponential chemical effects
    Lemes, Nelson H. T.
    dos Santos, Jose Paulo C.
    Braga, Joao P.
    APPLIED MATHEMATICAL MODELLING, 2016, 40 (17-18) : 7971 - 7976
  • [30] On the Matrix Mittag-Leffler Function: Theoretical Properties and Numerical Computation
    Popolizio, Marina
    MATHEMATICS, 2019, 7 (12)