ON THE NEW k-BIVARIATE MITTAG-LEFFLER FUNCTION

被引:0
|
作者
Jafari, Hossein [1 ,2 ,3 ,4 ]
Meddahi, Meryem [5 ]
Golanbar, Javad ebadpour [6 ]
Nguyen, Van thinh [7 ]
机构
[1] Duy Tan Univ, Inst Res & Dev, Da Nang, Vietnam
[2] Duy Tan Univ, Sch Engn & Technol, Da Nang, Vietnam
[3] Univ South Africa, Dept Math Sci, UNISA0003, Pretoria, South Africa
[4] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
[5] Univ Hassiba Ben Bouali, Fac Technol, Chlef, Algeria
[6] Payame Noor Univ Tehran, Dept Sci, Tehran, Iran
[7] Seoul Natl Univ, Dept Civil & Environm Engn, Seoul, South Korea
关键词
Bivariate Mittag-Leffler Function; Special Functions; Integral Representaions; Recurrence Relations; Fractional Calculus; General Transform; GAMMA-FUNCTION;
D O I
10.1142/S0218348X25401206
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A new analog formula of the bivariate Mittag-Leffler function is presented in this work. We prove some relationships with known special functions, integral representations and recurrence relations. Also, we study some further interesting properties of the given function including the general transform and fractional calculus. Finally, a new integral operator is investigated.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Some properties of bivariate Mittag-Leffler function
    Shahwan, Mohannad J. S.
    Bin-Saad, Maged G.
    Al-Hashami, Abdulmalik
    JOURNAL OF ANALYSIS, 2023, 31 (03) : 2063 - 2083
  • [2] Some properties of bivariate Mittag-Leffler function
    Mohannad J. S. Shahwan
    Maged G. Bin-Saad
    Abdulmalik Al-Hashami
    The Journal of Analysis, 2023, 31 : 2063 - 2083
  • [3] A NEW EXTENSION OF THE MITTAG-LEFFLER FUNCTION
    Arshad, Muhammad
    Choi, Junesang
    Mubeen, Shahid
    Nisar, Kottakkaran Sooppy
    Rahman, Gauhar
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 33 (02): : 549 - 560
  • [4] Laplace transform and the Mittag-Leffler function
    Teodoro, G. Sales
    de Oliveira, E. Capelas
    INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY, 2014, 45 (04) : 595 - 604
  • [5] On the numerical computation of the Mittag-Leffler function
    Valerio, Duarte
    Machado, Jose Tenreiro
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (10) : 3419 - 3424
  • [6] A FURTHER EXTENSION OF MITTAG-LEFFLER FUNCTION
    Andric, Maja
    Farid, Ghulam
    Pecaric, Josip
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (05) : 1377 - 1395
  • [7] Integral Representation of the Mittag-Leffler Function
    V. V. Saenko
    Russian Mathematics, 2022, 66 : 43 - 58
  • [8] A further extension of Mittag-Leffler function
    Maja Andrić
    Ghulam Farid
    Josip Pečarić
    Fractional Calculus and Applied Analysis, 2018, 21 : 1377 - 1395
  • [9] Note on generalized Mittag-Leffler function
    Desai, Rachana
    Salehbhai, I. A.
    Shukla, A. K.
    SPRINGERPLUS, 2016, 5
  • [10] Integral Representation of the Mittag-Leffler Function
    Saenko, V. V.
    RUSSIAN MATHEMATICS, 2022, 66 (04) : 43 - 58