On the structure of the top homology group of the Johnson kernel

被引:0
|
作者
Spiridonov, Igor a [1 ,2 ]
机构
[1] Natl Res Univ Higher Sch Econ, Fac Math, Moscow, Russia
[2] Skolkovo Inst Sci & Technol, Skolkovo, Russia
来源
ALGEBRAIC AND GEOMETRIC TOPOLOGY | 2024年 / 24卷 / 07期
关键词
TORELLI GROUP;
D O I
10.2140/agt.2024.24.3641
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Johnson kernel is the subgroup Kg of the mapping class group Mod(Eg) of a genus-g oriented closed surface E g generated by all Dehn twists about separating curves. We study the structure of the top homology group H 2g _ 3 ( K g , Z). For any collection of 2g- 3 disjoint separating curves on E g , one can construct the corresponding abelian cycle in the group H 2g _ 3 ( K g , Z); such abelian cycles will be called simple. We describe the structure of a Z[Mod(Eg)RKg]-module on the subgroup of H 2g _ 3 ( K g , Z) generated by all simple abelian cycles and find all relations between them.
引用
收藏
页码:3641 / 3668
页数:31
相关论文
共 17 条
  • [1] ON THE TOP HOMOLOGY GROUP OF THE JOHNSON KERNEL
    Gaifullin, Alexander A.
    MOSCOW MATHEMATICAL JOURNAL, 2022, 22 (01) : 83 - 101
  • [2] Torelli group, Johnson kernel, and invariants of homology spheres
    Morita, Shigeyuki
    Sakasai, Takuya
    Suzuki, Masaaki
    QUANTUM TOPOLOGY, 2020, 11 (02) : 379 - 410
  • [3] Commensurations of the Johnson kernel
    Brendle, TE
    Margalit, D
    GEOMETRY & TOPOLOGY, 2004, 8 : 1361 - 1384
  • [4] The abelianization of the Johnson kernel
    Dimca, Alexandru
    Hain, Richard
    Papadima, Stefan
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2014, 16 (04) : 805 - 822
  • [5] The Johnson homomorphism and its kernel
    Putman, Andrew
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2018, 735 : 109 - 141
  • [6] ORBITS OF CURVES UNDER THE JOHNSON KERNEL
    Church, Thomas
    AMERICAN JOURNAL OF MATHEMATICS, 2014, 136 (04) : 943 - 994
  • [7] Effective finite generation for [IAn, IAn] and the Johnson kernel
    Ershov, Mikhail
    Franz, Daniel
    GROUPS GEOMETRY AND DYNAMICS, 2023, 17 (04) : 1149 - 1192
  • [8] The cobordism group of homology cylinders
    Cha, Jae Choon
    Friedl, Stefan
    Kim, Taehee
    COMPOSITIO MATHEMATICA, 2011, 147 (03) : 914 - 942
  • [9] ABELIAN CYCLES IN THE HOMOLOGY OF THE TORELLI GROUP
    Lindell, Erik
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2023, 22 (04) : 1703 - 1726
  • [10] The Johnson homomorphism and the third rational cohorriology group of the Torelli group
    Sakasai, T
    TOPOLOGY AND ITS APPLICATIONS, 2005, 148 (1-3) : 83 - 111