Parameter Estimation for the Fractional Hawkes Process

被引:0
作者
Habyarimana, Cassien [1 ,2 ]
Aduda, Jane A. [3 ]
Scalas, Enrico [4 ]
机构
[1] Univ Rwanda, Dept Math, Kigali, Rwanda
[2] Pan African Univ Inst Sci, Dept Math Technol & Innovat, Nairobi, Kenya
[3] Jomo Kenyatta Univ Agr & Technol, Dept Stat & Actuarial Sci, Nairobi, Kenya
[4] Sapienza Univ Rome, Dept Stat Sci, Rome, Italy
关键词
Point processes; Hawkes processes; Likelihood function; Parameter estimation; Maximum likelihood; Approximate Bayesian computation; Summary statistics; Kullback-Leibler divergence; APPROXIMATE BAYESIAN COMPUTATION; CHAIN MONTE-CARLO; POINT-PROCESSES; INFERENCE; RECOMBINATION; EVOLUTION; TUTORIAL; SPECTRA;
D O I
10.1007/s13253-024-00663-5
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We estimate the parameters of the fractional Hawkes process using maximum likelihood and approximate Bayesian computation (ABC). To this purpose, we first derive the analytical form of the likelihood function of the process. It turns out that maximum likelihood is able to estimate the parameters at a good level of accuracy. Then, with Monte Carlo simulations, we compute the posteriors and we study the efficiency and performance of ABC procedures for estimating parameters. In the absence of theorems on sufficient statistics, we use five different statistics and a uniform prior and we compare the approximate posterior distribution with the exact likelihood for each parameter. The performance is determined quantitatively using Kullback-Leibler divergence. Our results show that the ABC method does a reasonable job at capturing the posterior distributions for parameters appearing linearly in the formula for the complete intensity, namely the base rate and the reproduction number.Supplementary materials accompanying this paper appear on-line
引用
收藏
页数:26
相关论文
共 39 条
[1]   Fitting the Bartlett–Lewis rainfall model using Approximate Bayesian Computation [J].
Aryal N.R. ;
Jones O.D. .
Mathematics and Computers in Simulation, 2020, 175 :153-163
[2]  
Beaumont MA, 2002, GENETICS, V162, P2025
[3]   Approximate Bayesian computation with the Wasserstein distance [J].
Bernton, Espen ;
Jacob, Pierre E. ;
Gerber, Mathieu ;
Robert, Christian P. .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2019, 81 (02) :235-269
[4]   Inference for stereological extremes [J].
Bortot, P. ;
Coles, S. G. ;
Sisson, S. A. .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2007, 102 (477) :84-92
[5]  
BROWN LD, 1986, FUNDAMENTALS STAT EX
[6]  
Chen J., 2021, Nonlocal and fractional operators SEMA SIMAI springer series
[7]  
Cheysson Felix, 2024, CRAN, DOI 10.32614/CRAN.package.hawkesbow
[8]  
Daley DJ., 2003, INTRO THEORY POINT P, DOI DOI 10.1007/B97277
[9]   A fractional Hawkes process model for earthquake aftershock sequences [J].
Davis, Louis ;
Baeumer, Boris ;
Wang, Ting .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2024, 73 (05) :1185-1202
[10]  
Deutsch I, 2021, Arxiv, DOI arXiv:2006.09015