Stimuli-Responsive Polymers for Tubal Actuators

被引:5
作者
Chen, Qing [1 ]
Wu, Si [1 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Res Ctr Phys Sci Microscale, Anhui Key Lab Optoelect Sci & Technol, Dept Polymer Sci & Engn,CAS Key Lab Soft Matter Ch, Hefei 230026, Peoples R China
基金
中国国家自然科学基金;
关键词
Hydrogels; Liquid crystal polymers; Stimuli-responsive polymers; Soft robotics; Tubal actuators; MICROFLUIDIC FABRICATION; HYDROGEL MICROFIBERS; TUBULAR HYDROGELS; LIGHT; TUBES; MANIPULATION; NETWORKS;
D O I
10.1002/chem.202403429
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Stimuli-responsive polymers for tubal actuators have garnered significant attention due to their potential applications in soft robotics, artificial blood vessels, controlled liquid transportation, and microchemical reactors. This perspective emphasizes the advantages, response mechanisms, and fundamental design principles of stimuli-responsive polymers for tubal actuators. It also addresses the biological and engineering applications, current challenges, and future prospects of stimuli-responsive polymers for tubal actuators. The discussion categorizes stimuli-responsive polymers for tubal actuators based on various properties, including liquid crystal elastomer actuators, hydrogel actuators, and shape memory polymer actuators. The subsequent sections focuses on the structural features, design principles, and biological applications of stimuli-responsive polymers for tubal actuator, elucidating their potential interrelationships. The molecular architectures and design principles are intricately linked to the stimuli-responsive mechanisms. Finally, this perspective outlines the challenges faced by stimuli-responsive polymers for tubal actuators. This article aims to facilitate broader applications of stimuli-responsive polymers for tubal actuators, thereby promoting progress across multiple fields.
引用
收藏
页数:14
相关论文
共 89 条
[1]   Tailoring three-dimensional architectures by rolled-up nanotechnology for mimicking microvasculatures [J].
Arayanarakool, Rerngchai ;
Meyer, Anne K. ;
Helbig, Linda ;
Sanchez, Samuel ;
Schmidt, Oliver G. .
LAB ON A CHIP, 2015, 15 (14) :2981-2989
[2]   Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs [J].
Bertassoni, Luiz E. ;
Cecconi, Martina ;
Manoharan, Vijayan ;
Nikkhah, Mehdi ;
Hjortnaes, Jesper ;
Cristino, Ana Luiza ;
Barabaschi, Giada ;
Demarchi, Danilo ;
Dokmeci, Mehmet R. ;
Yang, Yunzhi ;
Khademhosseini, Ali .
LAB ON A CHIP, 2014, 14 (13) :2202-2211
[3]  
Blaeser A., 2014, RSC ADV, V4, P46460
[4]   4D printing of bilayer tubular structure with dual-stimuli responsive based on self-rolling behavior [J].
Cao, Pengrui ;
Yang, Jing ;
Gong, Junhui ;
Tao, Liming ;
Wang, Tingmei ;
Ju, Junping ;
Zhou, Yanyi ;
Wang, Qihua ;
Zhang, Yaoming .
JOURNAL OF APPLIED POLYMER SCIENCE, 2023, 140 (01)
[5]   Macromolecular Phase-Transition-Driven Motility of Hollow Hydrogel Tubes [J].
Chen, Qing ;
Huang, Wei ;
Zhao, Qiuhua ;
Zhang, Lidong .
ACS APPLIED POLYMER MATERIALS, 2020, 2 (08) :3054-3059
[6]  
Chen S., 2023, SUPRAMOL MAT, V2, DOI DOI 10.1016/J.SUPMAT.2023.100032
[7]   Phase patterning of liquid crystal elastomers by laser-induced dynamic crosslinking [J].
Choi, Seok Hwan ;
Kim, Ju Hee ;
Ahn, Jiyong ;
Kim, Taegyeom ;
Jung, Yeongju ;
Won, Daeyeon ;
Bang, Junhyuk ;
Pyun, Kyung Rok ;
Jeong, Seongmin ;
Kim, Hyunsu ;
Kim, Young Gyu ;
Ko, Seung Hwan .
NATURE MATERIALS, 2024, 23 (06) :834-843
[8]   Bioinspired Actuators Based on Stimuli-Responsive Polymers [J].
Cui, Huanqing ;
Zhao, Qilong ;
Wang, Yunlong ;
Du, Xuemin .
CHEMISTRY-AN ASIAN JOURNAL, 2019, 14 (14) :2369-2387
[9]   Microfluidic fabrication of multiaxial microvessels via hydrodynamic shaping [J].
Daniele, Michael A. ;
Radom, Kathryn ;
Ligler, Frances S. ;
Adams, Andre A. .
RSC ADVANCES, 2014, 4 (45) :23440-23446
[10]   Cross-Linked Gel Electrolytes with Self-Healing Functionalities for Smart Lithium Batteries [J].
Davino, S. ;
Callegari, D. ;
Pasini, D. ;
Thomas, M. ;
Nicotera, I. ;
Bonizzoni, S. ;
Mustarelli, P. ;
Quartarone, E. .
ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (46) :51941-51953