Persistence of a class of degenerate hyperbolic lower dimensional invariant tori in Hamiltonian systems

被引:0
作者
Li, Qi [1 ]
Xu, Junxiang [2 ]
机构
[1] Nanjing Audit Univ, Sch Math, Nanjing 211815, Peoples R China
[2] Southeast Univ, Dept Math, Nanjing 210096, Peoples R China
关键词
Hamiltonian systems; Degenerate equilibrium; KAM iteration; Small divisors; Invariant tori; CONSERVATION; FREQUENCIES;
D O I
10.1016/j.jde.2025.113227
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper proves the persistence of degenerate hyperbolic lower dimensional invariant tori under small perturbations. The result is an extension of that in [41] to multiple dimensional case. The proof is based on the KAM technique with external parameters as counter terms and the theory of Brouwer degree. (c) 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:29
相关论文
共 42 条
[1]  
Arnold V.I., 1963, Russian Math. Surveys, V18, P9, DOI [DOI 10.1070/RM1963V018N05ABEH004130, 10.1070/RM1963v018n05ABEH004130]
[2]  
BROER HW, 1990, MEM AM MATH SOC, V83, P1
[3]  
Bruno A.D., 1971, Tr. Mosk. Mat. Obs., V25, P119
[5]  
Chenciner Alain., 1985, Inst. Hautes Etudes Sci. Publ. Math, P67
[6]   Birkhoff-Kolmogorov-Arnold-Moser tori in convex Hamiltonian systems [J].
Cheng, CQ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 177 (03) :529-559
[7]  
CHIERCHIA L, 1994, ANN I H POINCARE-PHY, V60, P1
[8]   Lower-Dimensional Invariant Tori for Perturbations of a Class of Non-convex Hamiltonian Functions [J].
Corsi, Livia ;
Feola, Roberto ;
Gentile, Guido .
JOURNAL OF STATISTICAL PHYSICS, 2013, 150 (01) :156-180
[9]   Oscillator Synchronisation under Arbitrary Quasi-periodic Forcing [J].
Corsi, Livia ;
Gentile, Guido .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 316 (02) :489-529
[10]  
Deimling K., 1985, Nonlinear Functional Analysis, DOI DOI 10.1007/978-3-662-00547-7