PIN: A new metric to evaluate solar irradiance forecast models

被引:0
|
作者
Temporal-Neto, Armando [1 ,2 ]
Pedruzzi, Rizzieri [3 ]
Melo Filho, Jose Bione [1 ]
Moreira, Davidson Martins [2 ,4 ]
机构
[1] Eletrobras, Dept Solar Wind & Hydro Tech Studies, Rua Delmiro Gouveia,333 San Martin, BR-50761901 Recife, PE, Brazil
[2] Senai Cimatec, Dept Comp Modeling, Ave Orlando Gomes,1845 Piata, BR-41650010 Salvador, BA, Brazil
[3] Univ Estado Rio De Janeiro, Dept Sanit Engn & Environm, R Sao Francisco Xavier,524 Maracana, BR-20550900 Rio De Janeiro, RJ, Brazil
[4] Smart & Sustainable Cities PG, PUCPR, R Imaculada Conceicao,1155 Prado Velho, BR-80215901 Curitiba, PR, Brazil
关键词
Solar irradiance modeling; Solar forecast; Modeling performance; RADIATION;
D O I
10.1016/j.egyr.2025.01.076
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Solar irradiance forecasts face challenge by cloud and aerosol variability in the terrestrial atmosphere. Model performance comparison can use known error metric, such as MBE or RMSE, but there is a lack of standardization. This article introduces anew metric called PIN (Peak Irradiance to Noise), designed to access solar irradiance modeling. The PIN metric compares the peak irradiance value to the error between the estimated and observed values (noise), on a logarithmic scale measured in decibels (dB). This approach normalizes errors and smooths outliers effects. PIN was tested using observed datasets from two sites at Brazil's semi-arid northeast, Casa Nova and Araripina, evaluating ERA5, WRF, and TMY models, and WRF presented the best performance across all cases. Benchmark models from literature were used to calculate PIN metric, and was demonstrated the PIN metric utility in distinguishing competing models and facilitating interpretation of performance differences. A performance rank classification in terms of PIN value is proposed.
引用
收藏
页码:2307 / 2315
页数:9
相关论文
共 50 条
  • [31] Solar ultraviolet irradiance: Origins, measurements, and models
    Floyd, L
    SUN'S SURFACE AND SUBSURFACE: INVESTIGATING SHAPE AND IRRADIANCE, 2003, 599 : 109 - 128
  • [32] Models of solar irradiance variations: Current status
    Natalie A. Krivova
    Sami K. Solanki
    Journal of Astrophysics and Astronomy, 2008, 29 : 151 - 158
  • [33] SPECTRAL SOLAR IRRADIANCE MODELS AND DATA SETS
    RIORDAN, CJ
    SOLAR CELLS, 1986, 18 (3-4): : 223 - 232
  • [34] Models of solar irradiance variations: Current status
    Krivova, Natalie A.
    Solanki, Sami K.
    JOURNAL OF ASTROPHYSICS AND ASTRONOMY, 2008, 29 (1-2) : 151 - 158
  • [35] Solar irradiance variability - comparison of models and observations
    Fox, PA
    Fontenla, JM
    White, OR
    SOLAR VARIABILITY AND CLIMATE CHANGE, 2004, 34 (02): : 231 - 236
  • [36] A New Metric to Evaluate Network Robustness
    Ghomsheh, Maliheh
    Kamandi, Ali
    2020 6TH INTERNATIONAL CONFERENCE ON WEB RESEARCH (ICWR), 2020, : 299 - 304
  • [37] Clear sky solar irradiance models: A review of seventy models
    Antonanzas-Torres, F.
    Urraca, R.
    Polo, J.
    Perpinan-Lamigueiro, O.
    Escobar, R.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2019, 107 : 374 - 387
  • [38] A Stochastic Nonlinear Predictive Controller for Solar Collector Fields Under Solar Irradiance Forecast Uncertainties
    Pataro, Igor M. L.
    Gil, Juan D.
    da Costa, Marcus V. Americano
    Roca, Lidia
    Guzman, Jose L.
    Berenguel, Manuel
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2024, 32 (01) : 99 - 111
  • [39] Satellite-Based Operational Solar Irradiance Forecast for Uruguay's Solar Power Plants
    Alonso-Suarez, Rodrigo
    Marchesoni, Franco
    Dovat, Liber
    Laguarda, Agustin
    2021 IEEE URUCON, 2021, : 182 - 187
  • [40] A New Look at Solar Irradiance Variation
    Foukal, Peter
    SOLAR PHYSICS, 2012, 279 (02) : 365 - 381