PIN: A new metric to evaluate solar irradiance forecast models

被引:0
|
作者
Temporal-Neto, Armando [1 ,2 ]
Pedruzzi, Rizzieri [3 ]
Melo Filho, Jose Bione [1 ]
Moreira, Davidson Martins [2 ,4 ]
机构
[1] Eletrobras, Dept Solar Wind & Hydro Tech Studies, Rua Delmiro Gouveia,333 San Martin, BR-50761901 Recife, PE, Brazil
[2] Senai Cimatec, Dept Comp Modeling, Ave Orlando Gomes,1845 Piata, BR-41650010 Salvador, BA, Brazil
[3] Univ Estado Rio De Janeiro, Dept Sanit Engn & Environm, R Sao Francisco Xavier,524 Maracana, BR-20550900 Rio De Janeiro, RJ, Brazil
[4] Smart & Sustainable Cities PG, PUCPR, R Imaculada Conceicao,1155 Prado Velho, BR-80215901 Curitiba, PR, Brazil
关键词
Solar irradiance modeling; Solar forecast; Modeling performance; RADIATION;
D O I
10.1016/j.egyr.2025.01.076
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Solar irradiance forecasts face challenge by cloud and aerosol variability in the terrestrial atmosphere. Model performance comparison can use known error metric, such as MBE or RMSE, but there is a lack of standardization. This article introduces anew metric called PIN (Peak Irradiance to Noise), designed to access solar irradiance modeling. The PIN metric compares the peak irradiance value to the error between the estimated and observed values (noise), on a logarithmic scale measured in decibels (dB). This approach normalizes errors and smooths outliers effects. PIN was tested using observed datasets from two sites at Brazil's semi-arid northeast, Casa Nova and Araripina, evaluating ERA5, WRF, and TMY models, and WRF presented the best performance across all cases. Benchmark models from literature were used to calculate PIN metric, and was demonstrated the PIN metric utility in distinguishing competing models and facilitating interpretation of performance differences. A performance rank classification in terms of PIN value is proposed.
引用
收藏
页码:2307 / 2315
页数:9
相关论文
共 50 条
  • [1] New atmosphere models to reconstruct solar irradiance
    Ermolli, I.
    Murabito, M.
    Stangalini, M.
    Giorgi, F.
    NUOVO CIMENTO C-COLLOQUIA AND COMMUNICATIONS IN PHYSICS, 2019, 42 (01):
  • [2] A Practical Method to Hourly Forecast the Solar Irradiance
    Hai, Tao
    Wen, Kewei
    Zhong, Jian
    Hu, Xiang
    Zhang, Zhao
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MATERIAL, MECHANICAL AND MANUFACTURING ENGINEERING, 2015, 27 : 1214 - 1220
  • [3] NEW MODELS FOR ESTIMATING THE DAILY GLOBAL SOLAR IRRADIANCE
    Mitroi, Mihai Razvan
    Ninulescu, Valerica
    Fara, Laurentiu
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2021, 83 (03): : 213 - 224
  • [4] New models for estimating the daily global solar irradiance
    Mitroi, Mihai Răzvan
    Ninulescu, Valerică
    Fara, Laurenţiu
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2021, 83 (03): : 213 - 224
  • [5] Solar irradiance forecast and far-side imaging
    Fontenla, J. M.
    Quemerais, E.
    Hernandez, I. Gonzalez
    Lindsey, C.
    Haberreiter, M.
    ADVANCES IN SPACE RESEARCH, 2009, 44 (04) : 457 - 464
  • [6] SOLAR IRRADIANCE CONVERSION MODELS
    PEREZ, R
    STEWART, R
    SOLAR CELLS, 1986, 18 (3-4): : 213 - 222
  • [7] Solar Irradiance Forecast System Based on Geostationary Satellite
    Peng, Zhenzhou
    Yoo, Shinjae
    Yu, Dantong
    Huang, Dong
    2013 IEEE INTERNATIONAL CONFERENCE ON SMART GRID COMMUNICATIONS (SMARTGRIDCOMM), 2013, : 708 - 713
  • [8] Solar Irradiance Forecast Based on Cloud Movement Prediction
    Radovan, Aleksander
    Sunde, Viktor
    Kucak, Danijel
    Ban, Zeljko
    ENERGIES, 2021, 14 (13)
  • [9] The SOLAR2000 empirical solar irradiance model and forecast tool
    Tobiska, WK
    Woods, T
    Eparvier, F
    Viereck, R
    Floyd, L
    Bouwer, D
    Rottman, G
    White, OR
    JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2000, 62 (14) : 1233 - 1250
  • [10] A novel metric for quantifying solar irradiance stability: Mapping solar irradiance variability to photovoltaic power generation
    Tian, Qun
    Li, Jinxiao
    Xie, Zhiang
    Li, Puxi
    Wang, Ya
    Chen, Dongwei
    Zheng, Yue
    RENEWABLE ENERGY, 2025, 239