Persistence and Burn-in in Solar Coronal Magnetic Field Simulations

被引:0
作者
Hall, Eric J. [1 ]
Meyer, Karen A. [1 ]
Yeates, Anthony R. [2 ]
机构
[1] Univ Dundee, Sch Sci & Engn, Div Math, Dundee DD1 4HN, Scotland
[2] Durham Univ, Dept Math Sci, Durham DH1 3LE, Scotland
基金
英国科学技术设施理事会;
关键词
LOCAL WHITTLE ESTIMATION; LONG-TERM PERSISTENCE; TIME-SERIES; HURST ANALYSIS; EVOLUTION; ESTIMATOR; ENERGY; MEMORY; MODEL; ONSET;
D O I
10.3847/1538-4357/ad99db
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Simulations of solar phenomena play a vital role in space-weather prediction. A critical computational question for automating research workflows in the context of data-driven solar coronal magnetic field simulations is quantifying a simulation's burn-in time, after which a solar quantity has evolved away from an arbitrary initial condition to a physically more realistic state. A challenge to quantifying simulation burn-in is that the underlying solar processes and data, like many physical phenomena, are non-Markovian and exhibit long memory or persistence and, therefore, their analysis evades standard statistical approaches. In this work, we provide evidence of long memory in the nonperiodic variations of solar quantities (including over timescales significantly shorter than previously identified) and demonstrate that magnetofrictional simulations capture the memory structure present in magnetogram data. We also provide an algorithm for the quantitative assessment of simulation burn-in time that can be applied to nonstationary time series with long memory. Our approach is based on time-delayed mutual information, an information-theoretic quantity, and includes a small-sample bias correction.
引用
收藏
页数:19
相关论文
共 100 条
  • [1] A study of magnetic complexity using Hurst's rescaled range analysis
    Adams, M
    Hathaway, DH
    Stark, BA
    Musielak, ZE
    [J]. SOLAR PHYSICS, 1997, 174 (1-2) : 341 - 355
  • [2] EXPECTED VALUE OF ADJUSTED RESCALED HURST RANGE OF INDEPENDENT NORMAL SUMMANDS
    ANIS, AA
    LLOYD, EH
    [J]. BIOMETRIKA, 1976, 63 (01) : 111 - 116
  • [3] DeepVel : Deep learning for the estimation of horizontal velocities at the solar surface
    Asensio Ramos, A.
    Requerey, I. S.
    Vitas, N.
    [J]. ASTRONOMY & ASTROPHYSICS, 2017, 604
  • [4] A Near-half-century Simulation of the Solar Corona
    Aslanyan, Valentin
    Meyer, Karen A.
    Scott, Roger B.
    Yeates, Anthony R.
    [J]. ASTROPHYSICAL JOURNAL LETTERS, 2024, 961 (01)
  • [5] A Statistical Comparison of EUV Brightenings Observed by SO/EUI with Simulated Brightenings in Nonpotential Simulations
    Barczynski, Krzysztof
    Meyer, Karen A.
    Harra, Louise K.
    Mackay, Duncan H.
    Auchere, Frederic
    Berghmans, David
    [J]. SOLAR PHYSICS, 2022, 297 (10)
  • [6] Beran J., 2013, LONG MEMORY PROCESSE, DOI DOI 10.1007/978-3-642-35512-7
  • [7] Beran J., 2017, Statistics for Long-Memory Processes, DOI DOI 10.1201/9780203738481
  • [8] Exploring the Origin of Stealth Coronal Mass Ejections with Magnetofrictional Simulations
    Bhowmik, P.
    Yeates, A. R.
    Rice, O. E. K.
    [J]. SOLAR PHYSICS, 2022, 297 (03)
  • [9] The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: SHARPs - Space-Weather HMI Active Region Patches
    Bobra, M. G.
    Sun, X.
    Hoeksema, J. T.
    Turmon, M.
    Liu, Y.
    Hayashi, K.
    Barnes, G.
    Leka, K. D.
    [J]. SOLAR PHYSICS, 2014, 289 (09) : 3549 - 3578
  • [10] Brockwell P.J., 1991, Time Series: Theory and Methods, DOI [10.1007/978-1-4419-0320-4, DOI 10.1007/978-1-4419-0320-4]