Remarkable High-Temperature Energy Storage in Co-Polymerized Polyetherimide Via Constructing Hybrid Electrostatic Potential Barriers

被引:0
作者
Hu, Deng [1 ]
Luo, Hang [1 ]
Guo, Ru [2 ]
He, Guanghu [1 ]
Wang, Fan [1 ]
Li, Xiaona [1 ]
Peng, Bo [1 ]
Wang, Huan [1 ]
Peng, Jiajun [1 ]
Zhang, Dou [1 ]
机构
[1] Cent South Univ, State Key Lab Powder Met, Changsha 410083, Hunan, Peoples R China
[2] Chinese Univ Hong Kong, Dept Mech & Automat Engn, Shatin, Hong Kong 999077, Peoples R China
基金
中国国家自然科学基金;
关键词
Carrier migration; Copolymer PEI films; Energy storage; High-temperature dielectric polymers; Hybrid electrostatic barriers; DIELECTRICS;
D O I
10.1002/adfm.202501488
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
High-temperature dielectric polymers are increasingly attracting significant interest for energy storage applications in harsh environments. However, the exponentially increased conduction losses under high temperatures and elevated electric fields often cause serious degradation of the capacitive performance of dielectrics. Unlike most reported energy-level tuning strategies, this study introduces a novel approach that constructs localized electrostatic barriers to enhance the high-temperature energy storage of polyetherimide (PEI) films. By copolymerizing amide groups MPD (1,3-Phenylenediamine) and PAB (4,4 '-Diaminobenzanilide) into the PEI backbone, the strong electrostatic separation effect of amide dipoles is established, leading to a significant electric potentials difference. Density Functional Theory (DFT) proves that intermolecular local potential fluctuations generate significant hybrid electrostatic barriers (4.2 eV) to trap carriers and suppress their migration within the spatial freedom domain. Consequently, the largely suppressed leakage current and enhanced breakdown strength are yielded in co-10PAB/90MPD polymer, creating a high energy density of 4.3 J cm(-3) (eta > 90%) at 200 degrees C as comparison to the original PEI-MPD (2.1 J cm(-3)), which surpasses most high-temperature energy storage polymers. This work demonstrates a promising paradigm of dipolar regulation at the molecular level for high-temperature dielectrics.
引用
收藏
页数:10
相关论文
共 54 条
  • [1] Tuning Nanofillers in In Situ Prepared Polyimide Nanocomposites for High-Temperature Capacitive Energy Storage
    Ai, Ding
    Li, He
    Zhou, Yao
    Ren, Lulu
    Han, Zhubing
    Yao, Bin
    Zhou, Wei
    Zhao, Ling
    Xu, Jianmei
    Wang, Qing
    [J]. ADVANCED ENERGY MATERIALS, 2020, 10 (16)
  • [2] Weak Solvation Effect Induced Optimal Interfacial Chemistry Enables Highly Durable Zn Anodes for Aqueous Zn-Ion Batteries
    Cao, Xianshuo
    Xu, Wei
    Zheng, Dezhou
    Wang, Fuxin
    Wang, Yi
    Shi, Xin
    Lu, Xihong
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (06)
  • [3] Chen J, 2023, NATURE, V615, P62, DOI [10.1038/s41586-022-05671-4, 10.1038/s41586-023-06366-0]
  • [4] Ultraviolet-Irradiated All-Organic Nanocomposites with Polymer Dots for High-Temperature Capacitive Energy Storage
    Ding, Jiale
    Zhou, Yao
    Xu, Wenhan
    Yang, Fan
    Zhao, Danying
    Zhang, Yunhe
    Jiang, Zhenhua
    Wang, Qing
    [J]. NANO-MICRO LETTERS, 2024, 16 (01)
  • [5] Scalable High-Permittivity Polyimide Copolymer with Ultrahigh High-Temperature Capacitive Performance Enabled by Molecular Engineering
    Dong, Jiufeng
    Li, Li
    Niu, Yujuan
    Pan, Zizhao
    Pan, Yupeng
    Sun, Liang
    Tan, Li
    Liu, Yuqi
    Xu, Xinwei
    Guo, Xugang
    Wang, Qing
    Wang, Hong
    [J]. ADVANCED ENERGY MATERIALS, 2024, 14 (09)
  • [6] Scalable Polyimide-Organosilicate Hybrid Films for High-Temperature Capacitive Energy Storage
    Dong, Jiufeng
    Li, Li
    Qiu, Peiqi
    Pan, Yupeng
    Niu, Yujuan
    Sun, Liang
    Pan, Zizhao
    Liu, Yuqi
    Tan, Li
    Xu, Xinwei
    Xu, Chen
    Luo, Guangfu
    Wang, Qing
    Wang, Hong
    [J]. ADVANCED MATERIALS, 2023, 35 (20)
  • [7] High-temperature resistant polyetherimides containing a twisted spirane structure for capacitive energy storage
    Duan, Yanan
    Wongwirat, Thumawadee
    Ju, Tianxiong
    Zhang, Shihai
    Wei, Junji
    Zhu, Lei
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (37) : 20021 - 20030
  • [8] Charge transport in high-mobility conjugated polymers and molecular semiconductors
    Fratini, Simone
    Nikolka, Mark
    Salleo, Alberto
    Schweicher, Guillaume
    Sirringhaus, Henning
    [J]. NATURE MATERIALS, 2020, 19 (05) : 491 - 502
  • [9] TSDC spectroscopy of relaxational and interfacial phenomena
    Gun'ko, V. M.
    Zarko, V. I.
    Goncharuk, E. V.
    Andriyko, L. S.
    Turov, V. V.
    Nychiporuk, Y. M.
    Leboda, R.
    Skubiszewska-Zieba, J.
    Gabchak, A. L.
    Osovskii, V. D.
    Ptushinskii, Y. G.
    Yurchenko, G. R.
    Mishchuk, O. A.
    Gorbik, P. P.
    Pissis, P.
    Blitz, J. P.
    [J]. ADVANCES IN COLLOID AND INTERFACE SCIENCE, 2007, 131 (1-2) : 1 - 89
  • [10] AI-assisted discovery of high-temperature dielectrics for energy storage
    Gurnani, Rishi
    Shukla, Stuti
    Kamal, Deepak
    Wu, Chao
    Hao, Jing
    Kuenneth, Christopher
    Aklujkar, Pritish
    Khomane, Ashish
    Daniels, Robert
    Deshmukh, Ajinkya A.
    Cao, Yang
    Sotzing, Gregory
    Ramprasad, Rampi
    [J]. NATURE COMMUNICATIONS, 2024, 15 (01)