A nomogram to preoperatively predict the aggressiveness of pancreatic neuroendocrine tumors based on CT features and 3D CT radiomic features

被引:0
作者
Wang, Ziyao [1 ]
Qiu, Jiajun [1 ]
Shen, Xiaoding [1 ]
Yang, Fan [1 ]
Liu, Xubao [1 ]
Wang, Xing [1 ]
Ke, Nengwen [1 ]
机构
[1] Sichuan Univ, West China Hosp, Chengdu, Peoples R China
关键词
Aggressiveness; Computed tomography; Pancreatic neuroendocrine tumors; Radiomic; ENETS CONSENSUS GUIDELINES; MANAGEMENT; METASTASIS; DIAGNOSIS; SURGERY; CM;
D O I
10.1007/s00261-024-04759-x
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
ObjectivesCombining Computed Tomography (CT) intuitive anatomical features with Three-Dimensional (3D) CT multimodal radiomic imaging features to construct a model for assessing the aggressiveness of pancreatic neuroendocrine tumors (pNETs) prior to surgery.MethodsThis study involved 242 patients, randomly assigned to training (170) and validation (72) cohorts. Preoperative CT and 3D CT radiomic features were used to develop a model predicting pNETs aggressiveness. The aggressiveness of pNETs was characterized by a combination of factors including G3 grade, nodal involvement (N + status), presence of distant metastases, and/or recurrence of the disease.ResultsThree distinct predictive models were constructed to evaluate the aggressiveness of pNETs using CT features, 3D CT radiomic features, and their combination. The combined model demonstrated the greatest predictive accuracy and clinical applicability in both the training and validation sets (AUCs (95% CIs) = 0.93 (0.90-0.97) and 0.89 (0.79-0.98), respectively). Subsequently, a nomogram was developed using the features from the combined model, displaying strong alignment between actual observations and predictions as indicated by the calibration curves. Using a nomogram score of 86.06, patients were classified into high- and low-aggressiveness groups, with the high-aggressiveness group demonstrating poorer overall survival and shorter disease-free survival.ConclusionThis study presents a combined model incorporating CT and 3D CT radiomic features, which accurately predicts the aggressiveness of PNETs preoperatively.
引用
收藏
页码:3662 / 3673
页数:12
相关论文
共 39 条
[1]   Preoperative Prediction of Lymph Node Metastases in Nonfunctional Pancreatic Neuroendocrine Tumors Using a Combined CT Radiomics-Clinical Model [J].
Ahmed, Taha M. ;
Zhu, Zhuotun ;
Yasrab, Mohammad ;
Blanco, Alejandra ;
Kawamoto, Satomi ;
He, Jin ;
Fishman, Elliot K. ;
Chu, Linda ;
Javed, Ammar A. .
ANNALS OF SURGICAL ONCOLOGY, 2024, 31 (12) :8136-8145
[2]   Comparative Analysis for the Distinction of Chromophobe Renal Cell Carcinoma from Renal Oncocytoma in Computed Tomography Imaging Using Machine Learning Radiomics Analysis [J].
Alhussaini, Abeer J. ;
Steele, J. Douglas ;
Nabi, Ghulam .
CANCERS, 2022, 14 (15)
[3]   Benign Tumors of the Pancreas-Radical Surgery Versus Parenchyma-Sparing Local Resection-the Challenge Facing Surgeons [J].
Beger, Hans G. .
JOURNAL OF GASTROINTESTINAL SURGERY, 2018, 22 (03) :562-566
[4]   Artificial intelligence in cancer imaging: Clinical challenges and applications [J].
Bi, Wenya Linda ;
Hosny, Ahmed ;
Schabath, Matthew B. ;
Giger, Maryellen L. ;
Birkbak, Nicolai J. ;
Mehrtash, Alireza ;
Allison, Tavis ;
Arnaout, Omar ;
Abbosh, Christopher ;
Dunn, Ian F. ;
Mak, Raymond H. ;
Tamimi, Rulla M. ;
Tempany, Clare M. ;
Swanton, Charles ;
Hoffmann, Udo ;
Schwartz, Lawrence H. ;
Gillies, Robert J. ;
Huang, Raymond Y. ;
Aerts, Hugo J. W. L. .
CA-A CANCER JOURNAL FOR CLINICIANS, 2019, 69 (02) :127-157
[5]   Long-term Outcomes of Parenchyma-sparing and Oncologic Resections in Patients With Nonfunctional Pancreatic Neuroendocrine Tumors <3 cm in a Large Multicenter Cohort [J].
Bolm, Louisa ;
Nebbia, Martina ;
Wei, Alice C. ;
Zureikat, Amer H. ;
Fernandez-del Castillo, Carlos ;
Zheng, Jian ;
Pulvirenti, Alessandra ;
Javed, Ammar A. ;
Sekigami, Yurie ;
Petruch, Natalie ;
Qadan, Motaz ;
Lillemoe, Keith D. ;
He, Jin ;
Ferrone, Cristina R. .
ANNALS OF SURGERY, 2022, 276 (03) :522-531
[6]   Prediction of Pancreatic Neuroendocrine Tumor Grade Based on CT Features and Texture Analysis [J].
Canellas, Rodrigo ;
Burk, Kristine S. ;
Parakh, Anushri ;
Sahani, Dushyant V. .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2018, 210 (02) :341-346
[7]   Quantitative analysis of enhanced CT in differentiating well-differentiated pancreatic neuroendocrine tumors and poorly differentiated neuroendocrine carcinomas [J].
Chen, Hai-Yan ;
Pan, Yao ;
Chen, Jie-Yu ;
Liu, Lu-lu ;
Yang, Yong-Bo ;
Li, Kai ;
Yu, Ri-Sheng ;
Shao, Guo-Liang .
EUROPEAN RADIOLOGY, 2022, 32 (12) :8317-8325
[8]  
Clark OH, 2009, J NATL COMPR CANC NE, V7, P712
[9]   ENETS Consensus Guidelines Update for the Management of Patients with Functional Pancreatic Neuroendocrine Tumors and Non-Functional Pancreatic Neuroendocrine Tumors [J].
Falconi, M. ;
Eriksson, B. ;
Kaltsas, G. ;
Bartsch, D. K. ;
Capdevila, J. ;
Caplin, M. ;
Kos-Kudla, B. ;
Kwekkeboom, D. ;
Rindi, G. ;
Kloeppel, G. ;
Reed, N. ;
Kianmanesh, R. ;
Jensen, R. T. .
NEUROENDOCRINOLOGY, 2016, 103 (02) :153-171
[10]   The North American Neuroendocrine Tumor Society Consensus Guidelines for Surveillance and Management of Metastatic and/or Unresectable Pheochromocytoma and Paraganglioma [J].
Fishbein, Lauren ;
Del Rivero, Jaydira ;
Else, Tobias ;
Howe, James R. ;
Asa, Sylvia L. ;
Cohen, Debbie L. ;
Dahia, Patricia L. M. ;
Fraker, Douglas L. ;
Goodman, Karyn A. ;
Hope, Thomas A. ;
Kunz, Pamela L. ;
Perez, Kimberly ;
Perrier, Nancy D. ;
Pryma, Daniel A. ;
Ryder, Mabel ;
Sasson, Aaron R. ;
Soulen, Michael C. ;
Jimenez, Camilo .
PANCREAS, 2021, 50 (04) :469-493