Successive phase transition in higher-order topological Anderson insulators

被引:0
作者
Li, Aodong [1 ]
Xu, Bingcong [2 ,3 ]
Xie, Biye [1 ]
机构
[1] Chinese Univ Hong Kong, Sch Sci & Engn, Shenzhen 518172, Guangdong, Peoples R China
[2] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan 430074, Peoples R China
来源
PHYSICAL REVIEW RESEARCH | 2025年 / 7卷 / 01期
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
BRANCHED FLOW; LOCALIZATION; DIFFUSION; ABSENCE;
D O I
10.1103/PhysRevResearch.7.013204
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Disorder, traditionally believed to hinder the propagation of waves, has recently been shown to prompt the occurrence of topological phase transitions. For example, when disorder strength continuously increases and surpasses a certain critical value, a transition from topologically trivial to nontrivial insulating phases can occur. However, in the nontrivial phase region, it remains unclear whether a finer phase diagram can be further classified by varying disorder strengths. Here, we present a successive topological phase transition driven by the disorder strength in a higher-order topological insulator with long-range couplings. As the disorder strength gradually increases, the real-space topological invariant of the system undergoes a consecutive change from 0 to 4, accompanied by a stepped increase in the number of boundary-localized corner states. Our work opens a pathway for utilizing disorder to induce phase transitions among different higher-order topological insulators.
引用
收藏
页数:6
相关论文
共 58 条
[1]  
Topinka M. A., LeRoy B. J., Westervelt R. M., Shaw S. E. J., Fleischmann R., Heller E. J., Maranowski K. D., Gossard A. C., Coherent branched flow in a two-dimensional electron gas, Nature (London), 410, (2001)
[2]  
Patsyk A., Sivan U., Segev M., Bandres M. A., Observation of branched flow of light, Nature (London), 583, (2020)
[3]  
Anderson P. W., Absence of diffusion in certain random lattices, Phys. Rev, 109, (1958)
[4]  
Evers F., Mirlin A. D., Anderson transitions, Rev. Mod. Phys, 80, (2008)
[5]  
Lagendijk A., Tiggelen B. v., Wiersma D. S., Fifty years of Anderson localization, Phys. Today, 62, 8, (2009)
[6]  
Abrahams E., Anderson P. W., Licciardello D. C., Ramakrishnan T. V., Scaling theory of localization: Absence of quantum diffusion in two dimensions, Phys. Rev. Lett, 42, (1979)
[7]  
Schwartz T., Bartal G., Fishman S., Segev M., Transport and Anderson localization in disordered two-dimensional photonic lattices, Nature (London), 446, (2007)
[8]  
Segev M., Silberberg Y., Christodoulides D. N., Anderson localization of light, Nat. Photon, 7, (2013)
[9]  
Condat C. A., Kirkpatrick T. R., Observability of acoustical and optical localization, Phys. Rev. Lett, 58, (1987)
[10]  
Hu H., Strybulevych A., Page J. H., Skipetrov S. E., van Tiggelen B. A., Localization of ultrasound in a three-dimensional elastic network, Nat. Phys, 4, (2008)