Exact finite-size corrections in the dimer model on a cylinder

被引:0
作者
Papoyan, Vladimir V. [1 ,2 ]
机构
[1] Joint Inst Nucl Res, Bogoliubov Lab Theoret Phys, Dubna 141980, Russia
[2] Dubna State Univ, Dubna 141982, Russia
关键词
finite-size scaling; asymptotic expansions; dimer statistics; Ising model with Brascamp-Kunz boundary conditions; UNIVERSAL SCALING FUNCTIONS; STATISTICAL-MECHANICS; BOUNDARY-CONDITIONS; ISING-MODEL; FREE-ENERGY; NUMBER; CLUSTERS;
D O I
10.1088/1402-4896/adbe0e
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The exact finite-size corrections to the free energy F of the dimer model on lattice MxN with cylindrical boundary conditions have been derived for three cases where the lattice is completely covered by dimers: M=2M , N=2N ; M=2M-1 , N=2N ; and M=2M , N=2N-1 . For these types of cylinders, ratios rp(rho) of the pth coefficient of F have been calculated for the infinitely long cylinder ( M ->infinity ) and infinitely long strip ( N ->infinity ) at varying aspect ratios. As in previous studies of the dimer model on the rectangular lattice with free boundary conditions and for the Ising model with Brascamp-Kunz boundary conditions, the limiting values p -> infinity exhibit abrupt anomalous behaviour of ratios rp(rho) at certain values of rho. These critical values of rho and the limiting values of the finite-size expansion coefficient ratios vary between the different models.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Finite-size corrections to the energy spectra of gapless one-dimensional systems in the presence of boundaries
    Liu, Yifan
    Shimizu, Haruki
    Ueda, Atsushi
    Oshikawa, Masaki
    SCIPOST PHYSICS, 2024, 17 (04):
  • [42] Finite-Size Scaling for the Baxter-Wu Model Using Block Distribution Functions
    Velonakis, Ioannis N.
    Hadjiagapiou, Ioannis A.
    BRAZILIAN JOURNAL OF PHYSICS, 2018, 48 (04) : 354 - 363
  • [43] Finite-size scaling, phase coexistence, and algorithms for the random cluster model on random graphs
    Helmuth, Tyler
    Jenssen, Matthew
    Perkins, Will
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2023, 59 (02): : 817 - 848
  • [44] Finite-size scaling for the 2D Ising model with minus boundary conditions
    Kotecky, R
    Medved, I
    JOURNAL OF STATISTICAL PHYSICS, 2001, 104 (5-6) : 905 - 943
  • [45] Finite-Size Scaling for the 2D Ising Model with Minus Boundary Conditions
    R. Kotecký
    I. Medved'
    Journal of Statistical Physics, 2001, 104 : 905 - 943
  • [46] Quantum phase transition and finite-size scaling of the one-dimensional Ising model
    Um, Jaegon
    Lee, Sung-Ik
    Kim, Beom Jun
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2007, 50 (01) : 285 - 289
  • [47] NONUNIVERSAL FINITE-SIZE EFFECTS NEAR CRITICAL POINTS
    Dohm, V.
    PATH INTEGRALS: NEW TRENDS AND PERSPECTIVES, PROCEEDINGS, 2008, : 261 - 270
  • [48] On Thermodynamic Description of Finite-Size Multiferroics
    Starkov, Ivan A.
    Amirov, Abdulkarim A.
    Starkov, Alexander S.
    SHAPE MEMORY ALLOYS, SMA 2018, 2018, 9 : 167 - 173
  • [49] A finite-size scaling study of the four-dimensional Ising model on the Creutz cellular automation
    Aktekin, N
    Günen, A
    Saglam, Z
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1999, 10 (05): : 875 - 881
  • [50] Finite-Size Relaxational Dynamics of a Spike Random Matrix Spherical Model
    de Freitas Pimenta, Pedro H. H.
    Stariolo, Daniel A. A.
    ENTROPY, 2023, 25 (06)