Exact finite-size corrections in the dimer model on a cylinder

被引:0
作者
Papoyan, Vladimir V. [1 ,2 ]
机构
[1] Joint Inst Nucl Res, Bogoliubov Lab Theoret Phys, Dubna 141980, Russia
[2] Dubna State Univ, Dubna 141982, Russia
关键词
finite-size scaling; asymptotic expansions; dimer statistics; Ising model with Brascamp-Kunz boundary conditions; UNIVERSAL SCALING FUNCTIONS; STATISTICAL-MECHANICS; BOUNDARY-CONDITIONS; ISING-MODEL; FREE-ENERGY; NUMBER; CLUSTERS;
D O I
10.1088/1402-4896/adbe0e
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The exact finite-size corrections to the free energy F of the dimer model on lattice MxN with cylindrical boundary conditions have been derived for three cases where the lattice is completely covered by dimers: M=2M , N=2N ; M=2M-1 , N=2N ; and M=2M , N=2N-1 . For these types of cylinders, ratios rp(rho) of the pth coefficient of F have been calculated for the infinitely long cylinder ( M ->infinity ) and infinitely long strip ( N ->infinity ) at varying aspect ratios. As in previous studies of the dimer model on the rectangular lattice with free boundary conditions and for the Ising model with Brascamp-Kunz boundary conditions, the limiting values p -> infinity exhibit abrupt anomalous behaviour of ratios rp(rho) at certain values of rho. These critical values of rho and the limiting values of the finite-size expansion coefficient ratios vary between the different models.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Exact results on finite size corrections for surface codes tailored to biased noise
    Xiao, Yinzi
    Srivastava, Basudha
    Granath, Mats
    QUANTUM, 2024, 8
  • [32] The Finite-Size Scaling Relation for the Order-Parameter Probability Distribution of the Six-Dimensional Ising Model
    Merdan, Ziya
    Karakus, Ozlem
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2016, 55 (11) : 4822 - 4829
  • [33] Investigation of Finite-Size 2D Ising Model with a Noisy Matrix of Spin-Spin Interactions
    Kryzhanovsky, Boris
    Malsagov, Magomed
    Karandashev, Iakov
    ENTROPY, 2018, 20 (08)
  • [34] Microcanonical Finite-Size Scaling
    Michael Kastner
    Michael Promberger
    Alfred Hüller
    Journal of Statistical Physics, 2000, 99 : 1251 - 1264
  • [35] Microcanonical finite-size scaling
    Kastner, M
    Promberger, M
    Hüller, A
    JOURNAL OF STATISTICAL PHYSICS, 2000, 99 (5-6) : 1251 - 1264
  • [36] Finite-size scaling and critical exponents of the real antiferromagnetic model
    Murtazaev, AK
    Kamilov, IK
    Aliev, KH
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1999, 204 (1-2) : 151 - 158
  • [37] Finite-size Nagle-Kardar model: Casimir force
    Dantchev, Daniel
    Tonchev, Nicholay
    Rudnick, Joseph
    PHYSICAL REVIEW E, 2024, 110 (06)
  • [38] Relaxation Dynamics and Finite-Size Effects in a Simple Model of Condensation
    Gotti, Gabriele
    Iubini, Stefano
    Politi, Paolo
    FLUCTUATION AND NOISE LETTERS, 2024, 23 (01):
  • [39] Finite-size effects for the Potts model with weak boundary conditions
    Borgs, C
    Kotecky, R
    Medved', I
    JOURNAL OF STATISTICAL PHYSICS, 2002, 109 (1-2) : 67 - 131
  • [40] Finite-Size Effects for the Potts Model with Weak Boundary Conditions
    C. Borgs
    R. Kotecký
    I. Medved'
    Journal of Statistical Physics, 2002, 109 : 67 - 131