Exact finite-size corrections in the dimer model on a cylinder

被引:0
|
作者
Papoyan, Vladimir V. [1 ,2 ]
机构
[1] Joint Inst Nucl Res, Bogoliubov Lab Theoret Phys, Dubna 141980, Russia
[2] Dubna State Univ, Dubna 141982, Russia
关键词
finite-size scaling; asymptotic expansions; dimer statistics; Ising model with Brascamp-Kunz boundary conditions; UNIVERSAL SCALING FUNCTIONS; STATISTICAL-MECHANICS; BOUNDARY-CONDITIONS; ISING-MODEL; FREE-ENERGY; NUMBER; CLUSTERS;
D O I
10.1088/1402-4896/adbe0e
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The exact finite-size corrections to the free energy F of the dimer model on lattice MxN with cylindrical boundary conditions have been derived for three cases where the lattice is completely covered by dimers: M=2M , N=2N ; M=2M-1 , N=2N ; and M=2M , N=2N-1 . For these types of cylinders, ratios rp(rho) of the pth coefficient of F have been calculated for the infinitely long cylinder ( M ->infinity ) and infinitely long strip ( N ->infinity ) at varying aspect ratios. As in previous studies of the dimer model on the rectangular lattice with free boundary conditions and for the Ising model with Brascamp-Kunz boundary conditions, the limiting values p -> infinity exhibit abrupt anomalous behaviour of ratios rp(rho) at certain values of rho. These critical values of rho and the limiting values of the finite-size expansion coefficient ratios vary between the different models.
引用
收藏
页数:18
相关论文
共 50 条
  • [11] An improved Landauer principle with finite-size corrections
    Reeb, David
    Wolf, Michael M.
    NEW JOURNAL OF PHYSICS, 2014, 16
  • [12] The Finite-Size Scaling Study of the Ising Model for the Fractals
    Merdan, Z.
    Bayirli, M.
    Gunen, A.
    Bulbul, M.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2016, 55 (04) : 2031 - 2039
  • [13] LOGARITHMIC FINITE-SIZE CORRECTIONS IN THE 3-DIMENSIONAL MEAN SPHERICAL MODEL
    BRANKOV, JG
    DANCHEV, DM
    JOURNAL OF STATISTICAL PHYSICS, 1993, 71 (3-4) : 775 - 798
  • [14] Boundary conditions and amplitude ratios for finite-size corrections of a one-dimensional quantum spin model
    Izmailian, N. Sh.
    Hu, Chin-Kum
    NUCLEAR PHYSICS B, 2009, 808 (03) : 613 - 624
  • [15] Finite-size corrections for universal boundary entropy in bond percolation
    de Gier, Jan
    Jacobsen, Jesper Lykke
    Ponsaing, Anita
    SCIPOST PHYSICS, 2016, 1 (02):
  • [16] Finite-size corrections for logarithmic representations in critical dense polymers
    Izmailian, Nickolay Sh.
    Ruelle, Philippe
    Hu, Chin-Kun
    PHYSICS LETTERS B, 2012, 711 (01) : 71 - 75
  • [17] The Finite-Size Scaling Study of the Ising Model for the Fractals
    Z. Merdan
    M. Bayirli
    A. Günen
    M. Bülbül
    International Journal of Theoretical Physics, 2016, 55 : 2031 - 2039
  • [18] Exact solution of the dimer model on the generalized finite checkerboard lattice
    Izmailian, N. Sh.
    Hu, Chin-Kun
    Kenna, R.
    PHYSICAL REVIEW E, 2015, 91 (06):
  • [19] Non-perturbative Approaches in Nanoscience and Corrections to Finite-Size Scaling
    Kaupuzs, J.
    Melnik, R. V. N.
    COUPLED MATHEMATICAL MODELS FOR PHYSICAL AND BIOLOGICAL NANOSCALE SYSTEMS AND THEIR APPLICATIONS, 2018, 232 : 65 - 73
  • [20] Cluster analysis of the Ising model and universal finite-size scaling
    Okabe, Y
    Kaneda, K
    Tomita, Y
    Kikuchi, M
    Hu, CK
    PHYSICA A, 2000, 281 (1-4): : 233 - 241