Exact finite-size corrections in the dimer model on a cylinder

被引:0
|
作者
Papoyan, Vladimir V. [1 ,2 ]
机构
[1] Joint Inst Nucl Res, Bogoliubov Lab Theoret Phys, Dubna 141980, Russia
[2] Dubna State Univ, Dubna 141982, Russia
关键词
finite-size scaling; asymptotic expansions; dimer statistics; Ising model with Brascamp-Kunz boundary conditions; UNIVERSAL SCALING FUNCTIONS; STATISTICAL-MECHANICS; BOUNDARY-CONDITIONS; ISING-MODEL; FREE-ENERGY; NUMBER; CLUSTERS;
D O I
10.1088/1402-4896/adbe0e
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The exact finite-size corrections to the free energy F of the dimer model on lattice MxN with cylindrical boundary conditions have been derived for three cases where the lattice is completely covered by dimers: M=2M , N=2N ; M=2M-1 , N=2N ; and M=2M , N=2N-1 . For these types of cylinders, ratios rp(rho) of the pth coefficient of F have been calculated for the infinitely long cylinder ( M ->infinity ) and infinitely long strip ( N ->infinity ) at varying aspect ratios. As in previous studies of the dimer model on the rectangular lattice with free boundary conditions and for the Ising model with Brascamp-Kunz boundary conditions, the limiting values p -> infinity exhibit abrupt anomalous behaviour of ratios rp(rho) at certain values of rho. These critical values of rho and the limiting values of the finite-size expansion coefficient ratios vary between the different models.
引用
收藏
页数:18
相关论文
共 50 条
  • [11] Exact solution for the inhomogeneous Dicke model in the canonical ensemble: Thermodynamical limit and finite-size corrections
    Pogosov, W. V.
    Shapiro, D. S.
    Bork, L. V.
    Onishchenko, A. I.
    NUCLEAR PHYSICS B, 2017, 919 : 218 - 237
  • [12] Finite-size corrections in the Sherrington-Kirkpatrick model
    Aspelmeier, T.
    Billoire, A.
    Marinari, E.
    Moore, M. A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (32)
  • [13] Numerically exact solution to the finite-size Dicke model
    Chen, Qing-Hu
    Zhang, Yu-Yu
    Liu, Tao
    Wang, Ke-Lin
    PHYSICAL REVIEW A, 2008, 78 (05):
  • [14] Universality and Exact Finite-Size Corrections for Spanning Trees on Cobweb and Fan Networks
    Izmailian, Nickolay
    Kenna, Ralph
    ENTROPY, 2019, 21 (09)
  • [15] Exact finite-size scaling with corrections in the two-dimensional Ising model with special boundary conditions
    Janke, W
    Kenna, R
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2002, 106 : 929 - 931
  • [16] Non-Local Finite-Size Effects in the Dimer Model
    Izmailian, Nickolay Sh.
    Priezzhev, Vyatcheslav B.
    Ruelle, Philippe
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2007, 3
  • [17] Finite-size corrections in the XXZ model and the Hubbard model with boundary fields
    Asakawa, H
    Suzuki, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (02): : 225 - 245
  • [18] Finite-size corrections in the XXZ model and the Hubbard model with boundary fields
    Asakawa, H.
    Suzuki, M.
    Journal of Physics A: Mathematical and General,
  • [19] FINITE-SIZE CORRECTIONS IN THE NON-LINEAR SCHRODINGER MODEL
    BERKOVICH, A
    MURTHY, G
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (07): : L395 - L400
  • [20] Corrections to finite-size scaling in the φ4 model on square lattices
    Kaupuzs, J.
    Melnik, R. V. N.
    Rimsans, J.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2016, 27 (09):