Application of Synthetic Microbial Communities of Kalidium schrenkianum in Enhancing Wheat Salt Stress Tolerance

被引:0
|
作者
Zhu, Jing [1 ]
Jia, Qiong [1 ]
Tang, Qi-Yong [1 ]
Osman, Ghenijan [1 ]
Gu, Mei-Ying [1 ]
Wang, Ning [1 ]
Zhang, Zhi-Dong [1 ]
机构
[1] Xinjiang Acad Agr Sci, Inst Microbiol, Xinjiang Key Lab Special Environm Microbiol, Urumqi 830091, Peoples R China
基金
中国国家自然科学基金;
关键词
<italic>Kalidium schrenkianum</italic>; synthetic microbial communities; wheat; salt stress tolerance; ENDOPHYTIC FUNGI; PLANT-GROWTH; SOIL;
D O I
10.3390/ijms26020860
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Soil salinization poses a significant challenge to global agriculture, particularly in arid and semi-arid regions like Xinjiang. Kalidium schrenkianum, a halophytic plant adapted to saline-alkaline conditions, harbors endophytic microorganisms with potential plant growth-promoting properties. In this study, 177 endophytic bacterial strains were isolated from K. schrenkianum, and 11 key strains were identified through functional screening based on salt tolerance, nutrient solubilization, and growth-promoting traits. Synthetic microbial communities (SMCs) were then constructed using these strains and optimized to enhance wheat growth under salt stress. The SMCs significantly improved seed germination, root length, and seedling vigor in both spring and winter wheat in hydroponic and pot experiments. Furthermore, the SMCs enhanced the activities of antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and levels of malondialdehyde (MDA) and proline (PRO). They also reduced oxidative stress and improved chlorophyll content in wheat seedlings. These results demonstrate the potential of microbial consortia derived from extreme environments as eco-friendly biofertilizers for improving crop performance in saline soils, offering a sustainable alternative to chemical fertilizers and contributing to agricultural resilience and productivity.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Growth and stomatal responses of bread wheat genotypes in tolerance to salt stress
    Rahnama, Afrasyab
    Poustini, Kazem
    Tavakkol-Afshari, Reza
    Tavakoli, Afshin
    World Academy of Science, Engineering and Technology, 2010, 47 : 14 - 19
  • [22] Weak Microwave Can Enhance Tolerance of Wheat Seedlings to Salt Stress
    Chen, Yi-Ping
    Jia, Jing-Fen
    Wang, Ying-Juan
    JOURNAL OF PLANT GROWTH REGULATION, 2009, 28 (04) : 381 - 385
  • [23] Weak Microwave Can Enhance Tolerance of Wheat Seedlings to Salt Stress
    Yi-Ping Chen
    Jing-Fen Jia
    Ying-Juan Wang
    Journal of Plant Growth Regulation, 2009, 28
  • [24] Enhancing Abiotic Stress Tolerance in Fruit Trees Using Microbial Biostimulants
    Albasri, Hibah M.
    Mawad, Asmaa M. M.
    Aldaby, Eman S. E.
    JOURNAL OF PURE AND APPLIED MICROBIOLOGY, 2024, 18 (03): : 1454 - 1470
  • [25] Comparative transcriptome analysis of synthetic and common wheat in response to salt stress
    Nakayama, Rio
    Safi, Mohammad Taheb
    Ahmadzai, Waisuddin
    Sato, Kazuhiro
    Kawaura, Kanako
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [26] Comparative transcriptome analysis of synthetic and common wheat in response to salt stress
    Rio Nakayama
    Mohammad Taheb Safi
    Waisuddin Ahmadzai
    Kazuhiro Sato
    Kanako Kawaura
    Scientific Reports, 12
  • [27] Purification and characterization of a fucoidan from the brown algae Macrocystis pyrifera and the activity of enhancing salt-stress tolerance of wheat seedlings
    Zou, Ping
    Yang, Xia
    Yuan, Yuan
    Jing, Changliang
    Cao, Jianmin
    Wang, Ying
    Zhang, Lin
    Zhang, Chengsheng
    Li, Yiqiang
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2021, 180 : 547 - 558
  • [28] Molecular characterization of salt tolerance of wheat genotypes using microsatellite markers and stress tolerance index
    Al-Otayk, Soleman M.
    BIOSCIENCE RESEARCH, 2020, 17 (03): : 1930 - 1936
  • [29] Recent advances in experimental design of synthetic microbial communities for biocontrol application
    Karmakar, Bappa
    Thakuria, Dwipendra
    Begum, Ramie Husneara
    Joga, Rajappa Janyanaik
    BIOCONTROL, 2025, 70 (02) : 229 - 244
  • [30] Function of the wheat TaSIP gene in enhancing drought and salt tolerance in transgenic Arabidopsis and rice
    Hao-Yue Du
    Yin-Zhu Shen
    Zhan-Jing Huang
    Plant Molecular Biology, 2013, 81 : 417 - 429