Improved bounds for the numerical radius via a new norm on B(H)

被引:0
作者
Bhunia, Pintu [1 ]
机构
[1] Indian Inst Sci, Dept Math, Bengaluru 560012, Karnataka, India
关键词
Numerical radius; operator norm; t-operator norm; inequality; INEQUALITIES;
D O I
10.1515/gmj-2024-2084
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce a new norm, christened the t-operator norm, on the space of all bounded linear operators defined on a complex Hilbert space H as parallel to T parallel to(t) := sup(parallel to y parallel to=1 parallel to x parallel to=1) (t vertical bar < Tx, y >vertical bar + (1 - t)vertical bar < x, Ty >vertical bar), where x, y is an element of H and t is an element of [ 0, 1]. This norm satisfies 1/2 parallel to T parallel to(t) <= w(T) <= parallel to T parallel to(t) and we explore its properties. This norm characterizes those invertible operators that are also unitary. We obtain various inequalities involving the t-operator norm and the usual operator norm. We show that w(T) <= min(t is an element of[0,1]) parallel to T parallel to(t) improves the existing bounds w(T) <= 1/2 (parallel to T parallel to + root T-2 parallel to) (see [F. Kittaneh, A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix, Studia Math. 158 (2003), no. 1, 11-17]) and w(T) <= root 1/2 parallel to T*T + TT*parallel to (see [F. Kittaneh, Numerical radius inequalities for Hilbert space operators, Studia Math. 168 (2005), no. 1, 73-80]). We show that parallel to T parallel to - w(T) <= min(vertical bar lambda vertical bar=1) parallel to T+lambda T*/2 parallel to. Further, we study the t-operator norm of operator matrices.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Maps preserving spectral radius, numerical radius, spectral norm
    Li, Chi-Kwong
    Poon, Edward
    Rastogi, Ashwin
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2007, 16 : 347 - 365
  • [42] Lower bounds for numerical radius of matrices
    Shen, Shu-Qian
    Huang, Ting-Zhu
    Yu, Juan
    PROCEEDINGS OF THE 14TH CONFERENCE OF INTERNATIONAL LINEAR ALGEBRA SOCIETY, 2007, : 233 - 236
  • [43] Upper Bounds of a Generalized Numerical Radius
    Sharifeh Rezagholi
    Mahya Hosseini
    Siamak Firouzian
    Kamal Fallahi
    Iranian Journal of Science, 2023, 47 : 961 - 967
  • [44] The numerical radius and bounds for zeros of a polynomial
    Alpin, YA
    Chien, MT
    Yeh, L
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (03) : 725 - 730
  • [45] MEAN-TYPE INEQUALITIES FOR THE NUMERICAL RADIUS AND THE OPERATOR NORM
    Hosseini, Amin
    Hassani, Mahmoud
    Moradi, Hamid Reza
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2025, 19 (01): : 261 - 273
  • [46] OPERATOR NORM AND NUMERICAL RADIUS ANALOGUES OF COHEN'S INEQUALITY
    Drnovsek, Roman
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2020, 23 (02): : 671 - 675
  • [47] Schatten p-Norm and Numerical Radius Inequalities with Applications
    Bhunia, Pintu
    Sahoo, Satyajit
    RESULTS IN MATHEMATICS, 2025, 80 (01)
  • [48] NEW ESTIMATE FOR THE NUMERICAL RADIUS OF A GIVEN MATRIX AND BOUNDS FOR THE ZEROS OF POLYNOMIALS
    Al-Hawari, Mohammad
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2009, 54 (04): : 73 - 80
  • [49] ESTIMATES FOR THE NUMERICAL RADIUS AND THE SPECTRAL RADIUS OF THE FROBENIUS COMPANION MATRIX AND BOUNDS FOR THE ZEROS OF POLYNOMIALS
    Abu-Omar, Amer
    Kittaneh, Fuad
    ANNALS OF FUNCTIONAL ANALYSIS, 2014, 5 (01): : 56 - 62
  • [50] Norm and numerical radius inequalities for operator matrices
    Kittaneh, Fuad
    Moradi, Hamid Reza
    Sababheh, Mohammad
    LINEAR & MULTILINEAR ALGEBRA, 2023,