Improved bounds for the numerical radius via a new norm on B(H)

被引:0
|
作者
Bhunia, Pintu [1 ]
机构
[1] Indian Inst Sci, Dept Math, Bengaluru 560012, Karnataka, India
关键词
Numerical radius; operator norm; t-operator norm; inequality; INEQUALITIES;
D O I
10.1515/gmj-2024-2084
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce a new norm, christened the t-operator norm, on the space of all bounded linear operators defined on a complex Hilbert space H as parallel to T parallel to(t) := sup(parallel to y parallel to=1 parallel to x parallel to=1) (t vertical bar < Tx, y >vertical bar + (1 - t)vertical bar < x, Ty >vertical bar), where x, y is an element of H and t is an element of [ 0, 1]. This norm satisfies 1/2 parallel to T parallel to(t) <= w(T) <= parallel to T parallel to(t) and we explore its properties. This norm characterizes those invertible operators that are also unitary. We obtain various inequalities involving the t-operator norm and the usual operator norm. We show that w(T) <= min(t is an element of[0,1]) parallel to T parallel to(t) improves the existing bounds w(T) <= 1/2 (parallel to T parallel to + root T-2 parallel to) (see [F. Kittaneh, A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix, Studia Math. 158 (2003), no. 1, 11-17]) and w(T) <= root 1/2 parallel to T*T + TT*parallel to (see [F. Kittaneh, Numerical radius inequalities for Hilbert space operators, Studia Math. 168 (2005), no. 1, 73-80]). We show that parallel to T parallel to - w(T) <= min(vertical bar lambda vertical bar=1) parallel to T+lambda T*/2 parallel to. Further, we study the t-operator norm of operator matrices.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] New norm and numerical radius bounds
    Sababheh, Mohammad
    Moradi, Hamid Reza
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2025, 36 (01)
  • [3] Numerical Radius and Norm Bounds via the Moore-Penrose Inverse
    Sababheh, Mohammad
    Djordjevic, Dragan S.
    Moradi, Hamid Reza
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2024, 18 (05)
  • [4] On a new norm on B(H) and its applications to numerical radius inequalities
    Sain, Debmalya
    Bhunia, Pintu
    Bhanja, Aniket
    Paul, Kallol
    ANNALS OF FUNCTIONAL ANALYSIS, 2021, 12 (04)
  • [5] Improved lower bounds for numerical radius via Cartesian decomposition
    Alrimawi, Fadi
    Abushaheen, Fuad A.
    Alkhateeb, Rami
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2024, 33 (02): : 169 - 175
  • [6] On some new upper bounds for numerical radius
    Bilal, Rimsha
    Hyder, Javariya
    Akram, Muhammad Saeed
    Dragomir, Silvestru Sever
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2025, 18 (06)
  • [7] NUMERICAL RADIUS INEQUALITIES OF OPERATOR MATRICES FROM A NEW NORM ON B(H)
    Bhunia, Pintu
    Bhanja, Aniket
    Sain, Debmalya
    Paul, Kallol
    MISKOLC MATHEMATICAL NOTES, 2023, 24 (02) : 653 - 664
  • [8] Generalized Upper Bounds Estimation of Numerical Radius and Norm for the Sum of Operators
    Gao, Muqile
    Wu, Deyu
    Chen, Alatancang
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (04)
  • [9] Improved numerical radius bounds using the Moore-Penrose inverse ☆
    Bhunia, Pintu
    Kittaneh, Fuad
    Sahoo, Satyajit
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2025, 711 : 1 - 16
  • [10] New Estimates on Numerical Radius and Operator Norm of Hilbert Space Operators
    Hassani, Mahmoud
    Omidvar, Mohsen Erfanian
    Moradi, Hamid Reza
    TOKYO JOURNAL OF MATHEMATICS, 2021, 44 (02) : 439 - 449