. In this paper, we prove a sharp uniqueness result for the singular Schro<spacing diaeresis>dinger equation with an inverse square potential. This will be done without assuming geometrical restrictions on the observation region. The proof relies on a recent technique transforming the Schro<spacing diaeresis>dinger equation into an elliptic equation. We show that this technique is still applicable for singular equations. In our case, substantial difficulties arise when dealing with singular potentials of cylindrical type. Using the uniqueness result, we show the approximate controllability of the equation using a distributed control. The uniqueness result is also applied to prove the uniqueness for an inverse source problem.
机构:
Univ Milano Bicocca, Dipartimento Matemat & Applicaz, I-20125 Milan, ItalyUniv Milano Bicocca, Dipartimento Matemat & Applicaz, I-20125 Milan, Italy
Felli, Veronica
;
Ferrero, Alberto
论文数: 0引用数: 0
h-index: 0
机构:
Univ Piemonte Orientale, I-15121 Alessandria, ItalyUniv Milano Bicocca, Dipartimento Matemat & Applicaz, I-20125 Milan, Italy
机构:
Univ Milano Bicocca, Dipartimento Matemat & Applicaz, I-20125 Milan, ItalyUniv Milano Bicocca, Dipartimento Matemat & Applicaz, I-20125 Milan, Italy
Felli, Veronica
;
Ferrero, Alberto
论文数: 0引用数: 0
h-index: 0
机构:
Univ Piemonte Orientale, I-15121 Alessandria, ItalyUniv Milano Bicocca, Dipartimento Matemat & Applicaz, I-20125 Milan, Italy