Cordycepin alleviates metabolic dysfunction-associated liver disease by restoring mitochondrial homeostasis and reducing oxidative stress via Parkin-mediated mitophagy

被引:0
作者
Tian, Hai-Ying [1 ,2 ]
Yu, Dao-Jiang [1 ,2 ,3 ]
Xie, Teng [1 ,2 ]
Xu, Meng-Xia [1 ,2 ]
Wang, Yu-Hao [1 ,2 ]
Sun, Xi-Lu [1 ,2 ]
Zhou, Xin-Meng [1 ,2 ]
Han, Ying-Xuan [1 ,2 ]
Liao, Qing-Qing [1 ,2 ]
Zhao, Yu-Jie [4 ]
Liao, Juan [1 ,2 ]
El-Kassas, Mohamed [5 ,6 ,7 ]
Sun, Xiao-Dong [1 ,2 ,4 ]
Zhang, Yuan-Yuan [1 ,2 ,3 ]
机构
[1] Sichuan Univ, West China Sch Publ Hlth, West China Sch Pharm, West China Sch Basic Med Sci & Forens Med, Chengdu 610041, Peoples R China
[2] Sichuan Univ, West China Hosp 4, Chengdu 610041, Peoples R China
[3] Chengdu Med Coll, China Natl Nucl Corp Hosp 416, Affiliated Hosp 2, Chengdu 610051, Peoples R China
[4] Tibet Univ, Med Coll, Lhasa 850000, Peoples R China
[5] Helwan Univ, Fac Med, Endem Med Dept, Cairo, Egypt
[6] King Saud Univ, Coll Med, Liver Dis Res Ctr, Riyadh, Saudi Arabia
[7] Steatot Liver Dis Study Fdn Middle East & North Af, Cairo, Egypt
基金
中国国家自然科学基金;
关键词
Metabolic dysfunction-associated steatotic liver; disease; Nonalcoholic fatty liver disease; Cordycepin; Autophagy; Mitochondria homeostasis; Oxidative stress; QUALITY-CONTROL;
D O I
10.1016/j.bcp.2025.116750
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) keeps rising with only a few drugs available. The present study aims to investigate the effects and mechanisms of cordycepin on MASLD. Male C57BL/6 mice were induced with a 90-day high-fat diet (HFD) and intraperitoneal administration with streptozotocin to establish MASLD murine model. Then they were randomly divided into the HFD and cordycepin groups (15, 30, 45 mg/kg). Cordycepin was orally given for 30 days. Serum total cholesterol (TC), triacylglyceride (TG), and aspartate aminotransferase (AST) levels were measured. L02 cells were induced by oleate acid (OA) or lipopolysaccharides (LPS), and treated with cordycepin or combined with inhibitors including chloroquine, 3-Methyladenine, and compound C. Atg7 and Parkin were knocked down in L02 cells using siRNA. Oil Red O and Nile Red staining for measuring lipid deposition. Mitochondria were visualized by transfection with mCherry-TOMM20-N10. Quantitative real-time PCR, Western blotting, and immunofluorescence staining were used to determine expressions of key molecules in inflammation, lipid metabolism, mitochondria homeostasis, and oxidative stress. Cordycepin significantly mitigated lipid deposition and ballooning in the livers of MASLD mice. Serum TC, TG, and AST levels were decreased by cordycepin. Cordycepin alleviated OA-induced lipid deposition and LPS-induced inflammation in L02 cells, attenuated oxidative stress, promoted autophagy, and maintained the autophagic flux by activating AMP-activated protein kinase (AMPK). Cordycepin reduced the accumulation of impaired mitochondria by enhancing Parkin-dependent mitophagy and promoting mitochondrial biogenesis. Cordycepin alleviates MASLD by restoring mitochondrial homeostasis and reducing oxidative stress via activating the Parkin-mediated mitophagy.
引用
收藏
页数:17
相关论文
共 49 条
  • [1] Powell E.E., Wong V.W., Rinella M., Non-alcoholic fatty liver disease, Lancet, 397, 10290, pp. 2212-2224, (2021)
  • [2] Paternostro R., Trauner M., Current treatment of non-alcoholic fatty liver disease, J. Intern. Med., 292, 2, pp. 190-204, (2022)
  • [3] Zhou J., Zhou F., Wang W., Zhang X.J., Ji Y.X., Zhang P., She Z.G., Zhu L., Cai J., Li H., Epidemiological features of NAFLD from 1999 to 2018 in China, Hepatology, 71, 5, pp. 1851-1864, (2020)
  • [4] Man S., Deng Y., Ma Y., Fu J., Bao H., Yu C., Lv J., Liu H., Wang B., Li L., Prevalence of liver steatosis and fibrosis in the general population and various high-risk populations: a nationwide study with 5.7 million adults in China, Gastroenterology, 165, 4, pp. 1025-1040, (2023)
  • [5] Sheka A.C., Adeyi O., Thompson J., Hameed B., Crawford P.A., Ikramuddin S., Nonalcoholic steatohepatitis: a review, J. Am. Med. Assoc., 323, 12, pp. 1175-1183, (2020)
  • [6] Rinella M.E., Lazarus J.V., Ratziu V., Francque S.M., Sanyal A.J., Kanwal F., Romero D., Abdelmalek M.F., Anstee Q.M., Arab J.P., Arrese M., Bataller R., Beuers U., Boursier J., Bugianesi E., Byrne C.D., Castro Narro G.E., Chowdhury A., Cortez-Pinto H., Cryer D.R., Cusi K., El-Kassas M., Klein S., Eskridge W., Fan J., Gawrieh S., Guy C.D., Harrison S.A., Kim S.U., Koot B.G., Korenjak M., Kowdley K.V., Lacaille F., Loomba R., Mitchell-Thain R., Morgan T.R., Powell E.E., Roden M., Romero-Gomez M.
  • [7] Keam S.J., Resmetirom: first approval, Drugs, 84, 6, pp. 729-735, (2024)
  • [8] Harrison S.A., Allen A.M., Dubourg J., Noureddin M., Alkhouri N., Challenges and opportunities in NASH drug development, Nat. Med., 29, 3, pp. 562-573, (2023)
  • [9] Moehlman A.T., Youle R.J., Mitochondrial quality control and restraining innate immunity, Annu. Rev. Cell Dev. Biol., 36, pp. 265-289, (2020)
  • [10] Braun R.J., Westermann B., With the help of MOM: mitochondrial contributions to cellular quality control, Trends Cell Biol., 27, 6, pp. 441-452, (2017)