Dynamic Magnetic Field Compensation Based on Real-Time Signal Separation for Array Optically Pumped Magnetometers

被引:0
作者
Niu, Yaqiong [1 ,2 ,3 ]
Cheng, Longsheng [1 ]
Hou, Xingshen [1 ]
Ye, Chaofeng [1 ,4 ]
机构
[1] ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Shanghai 200050, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100864, Peoples R China
[4] ShanghaiTech Univ, State Key Lab Adv Med Mat & Devices, Shanghai 201210, Peoples R China
基金
中国国家自然科学基金;
关键词
Magnetic fields; Magnetic field measurement; Sensors; Magnetic sensors; Magnetometers; Sensitivity; Coils; Laser beams; Optical sensors; Optical pumping; Array sensors; dynamic magnetic field compensation; optically pumped magnetometer (OPM); signal separation; ZERO-FIELD; MAGNETOENCEPHALOGRAPHY; OPERATION;
D O I
10.1109/JSEN.2025.3543684
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Optically pumped magnetometers (OPMs) operating in the spin-exchange relaxation-free (SERF) regime achieve excellent sensitivity in environments with zero magnetic fields. Therefore, it is essential to suppress the environment's magnetic field. As the environment's magnetic field is not constant, it is necessary to compensate the magnetic field dynamically. This article presents a method of compensating the environment magnetic field dynamically for array OPMs based on real-time signal separation. The OPMs serve as the signal measurement sensors, as well as the quasi-static environment magnetic field monitoring sensors. The OPMs are placed orthogonal to each other to monitor the three components of the magnetic field. The output signals are separated and reconstructed using a fast wavelet transform. The low-frequency component is utilized to calculate the compensation current and the high-frequency component is recorded as the measurement result. This method does not require any additional sensors for magnetic field compensation, resulting in a simplified setting and low cost. The experimental results show that the method can suppress the quasi-static magnetic field fluctuations to less than one percent in real time. The magnetic field fluctuation is controlled within 10, 10, and 1 pT for the three axes. For array sensors, the effect of the magnetic field gradient can be reduced by utilizing internal coils in each OPM. The magnetic signal of a human heart is measured, which verifies the feasibility of the method for ultraweak biomagnetic field measurement.
引用
收藏
页码:10913 / 10921
页数:9
相关论文
共 37 条
[1]   A magnetically shielded room with ultra low residual field and gradient [J].
Altarev, I. ;
Babcock, E. ;
Beck, D. ;
Burghoff, M. ;
Chesnevskaya, S. ;
Chupp, T. ;
Degenkolb, S. ;
Fan, I. ;
Fierlinger, P. ;
Frei, A. ;
Gutsmiedl, E. ;
Knappe-Grueneberg, S. ;
Kuchler, F. ;
Lauer, T. ;
Link, P. ;
Lins, T. ;
Marino, M. ;
McAndrew, J. ;
Niessen, B. ;
Paul, S. ;
Petzoldt, G. ;
Schlaepfer, U. ;
Schnabel, A. ;
Sharma, S. ;
Singh, J. ;
Stoepler, R. ;
Stuiber, S. ;
Sturm, M. ;
Taubenheim, B. ;
Trahms, L. ;
Voigt, J. ;
Zechlau, T. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2014, 85 (07)
[2]   Magnetoencephalography for brain electrophysiology and imaging [J].
Baillet, Sylvain .
NATURE NEUROSCIENCE, 2017, 20 (03) :327-339
[3]   VARIOUS LEVEL CROSSING RESONANCES ON ATOMS PUMPED OPTICALLY IN ZERO FIELD .1. THEORY [J].
COHENTANNOUDJI, C ;
DUPONTRO.J ;
HAROCHE, S ;
LALOE, F .
REVUE DE PHYSIQUE APPLIQUEE, 1970, 5 (01) :95-+
[4]   Ground magnetic survey on Mars from the Zhurong rover [J].
Du, Aimin ;
Ge, Yasong ;
Wang, Huapei ;
Li, Haiying ;
Zhang, Ying ;
Luo, Hao ;
Huang, Can ;
Shan, Lican ;
Han, Fei ;
Liu, Yang ;
Zou, Yongliao ;
Wang, Chi ;
Pan, Yongxin ;
Liu, Qingsong ;
Mitchell, Ross N. ;
Jia, Yang ;
Chen, Baichao ;
Jin, Shengyi ;
Jiang, Yi ;
Zhang, Tielong ;
Zhu, Rixiang ;
Gubbins, David ;
Zhang, Keke .
NATURE ASTRONOMY, 2023, 7 (09) :1037-+
[5]   In situ triaxial magnetic field compensation for the spin-exchange-relaxation-free atomic magnetometer [J].
Fang, Jiancheng ;
Qin, Jie .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (10)
[6]   Clinical application of magnetocardiography [J].
Fenici, R ;
Brisinda, D ;
Meloni, AM .
EXPERT REVIEW OF MOLECULAR DIAGNOSTICS, 2005, 5 (03) :291-313
[7]   Measurements of magnetic materials [J].
Fiorillo, Fausto .
METROLOGIA, 2010, 47 (02) :S114-S142
[8]   A Brief Introduction to Magnetoencephalography (MEG) and Its Clinical Applications [J].
Fred, Alfred Lenin ;
Kumar, Subbiahpillai Neelakantapillai ;
Kumar Haridhas, Ajay ;
Ghosh, Sayantan ;
Purushothaman Bhuvana, Harishita ;
Sim, Wei Khang Jeremy ;
Vimalan, Vijayaragavan ;
Givo, Fredin Arun Sedly ;
Jousmaki, Veikko ;
Padmanabhan, Parasuraman ;
Gulyas, Balazs .
BRAIN SCIENCES, 2022, 12 (06)
[9]   A Novel Coil-Based Overhauser Vector Magnetometer for the Automatic Measurement of Absolute Geomagnetic Total Field and Directions [J].
Ge, Jian ;
Yu, Hong ;
Luo, Wang ;
Shen, Yumo ;
Dong, Haobin ;
Liu, Zheng .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2024, 29 (03) :1634-1646
[10]   High-Precision Electrical Determination and Correction of Attitude Deviation for the Coil Vector Magnetometer [J].
Ge, Jian ;
Zhu, Jing ;
Hu, Xiangyun ;
Xu, Wei ;
Feng, Ke ;
Zhang, Yongchao ;
Luo, Wang ;
Li, Penghui ;
Dong, Haobin ;
Liu, Zheng .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72