Adaptive coil and compensation integration design (ACCID) for enhancing wireless charging for electric vehicles with efficient power transfer

被引:0
|
作者
Raina, T. A. Annai [1 ]
Marshiana, D. [2 ]
机构
[1] Sathyabama Inst Sci & Technol, Dept Elect & Elect Engn, Chennai 600119, Tamil Nadu, India
[2] Symbiosis Int Univ, Symbiosis Inst Technol, Elect & Telecommun Engn Dept, Pune Campus, Pune 412115, India
关键词
Adaptive coil and compensation integration design; Double-Sided LCC compensation circuit; Electric vehicle; Nested coil; Switching frequency; Wireless power transfer; Load condition optimization; TRANSFER SYSTEM; IMPLEMENTATION; NETWORK;
D O I
10.1016/j.compeleceng.2025.110184
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The rapid adoption of Electric Vehicles (EVs) necessitates the development of efficient and reliable Wireless Power Transfer (WPT) systems. However, conventional WPT designs face challenges such as alignment sensitivity, high leakage inductance, and efficiency variations under dynamic load conditions. This research proposes an Adaptive Coil and Compensation Integration Framework (ACCIF) to enhance wireless EV charging by optimizing magnetic coupling and ensuring stable power transfer. A novel nested coil configuration is introduced, wherein the primary and secondary windings follow an interleaving pattern to enhance electromagnetic coupling, minimize leakage inductance, and mitigate electromagnetic interference (EMI). The nested design improves field alignment and ensures consistent power transfer over unipolar coils. Additionally, a double-sided LCC (D-LCC) compensation circuit is employed to maintain resonance stability and optimize efficiency across varying load conditions. The system leverages Resonant Inductive Power Transfer to sustain a constant current in the transmitter-side inductor, further enhancing power transfer efficiency. Experimental validation demonstrates a power transfer capability of 0.6 kW across a 243 mm air gap, achieving an efficiency of 94.68 %. By integrating advanced coil structures with adaptive compensation mechanisms, this research provides a scalable and practical solution for improving WPT technologies, contributing to the advancement of efficient and reliable wireless EV charging systems.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Inductive Wireless Power Transfer Charging for Electric Vehicles-A Review
    Mahesh, Aganti
    Chokkalingam, Bharatiraja
    Mihet-Popa, Lucian
    IEEE ACCESS, 2021, 9 : 137667 - 137713
  • [22] Minimizing Material Usage for Efficient and Compact Coil in Wireless Charging System of Electric Vehicles
    Feng, Hao
    Wang, Dongsheng
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2024, 10 (02): : 2886 - 2898
  • [23] Review of Wireless Power Transfer (WPT) on Electric Vehicles (EVs) Charging
    Korakianitis, Nikolaos
    Vokas, Georgios A.
    Ioannides, Georgios
    TECHNOLOGIES AND MATERIALS FOR RENEWABLE ENERGY, ENVIRONMENT AND SUSTAINABILITY: TMREES19GR, 2019, 2190
  • [24] Design of a Capacitive Power Transfer System for Charging of Electric Vehicles
    Elekhtiar, Asmaa
    Eltagy, Lobna
    Zamzam, Tassneem
    Massoud, Ahmed
    2018 IEEE SYMPOSIUM ON COMPUTER APPLICATIONS & INDUSTRIAL ELECTRONICS (ISCAIE 2018), 2018, : 150 - 155
  • [25] Design of Transformer for Wireless Power Transfer in Electric Vehicles
    Kathirvelu, K. Parkavi
    Sandeep, G. G., V
    Swathi, J.
    Amirtharajan, Rengarajan
    Balasubramanian, R.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY-TRANSACTIONS OF ELECTRICAL ENGINEERING, 2021, 45 (04) : 1311 - 1324
  • [26] Design of Transformer for Wireless Power Transfer in Electric Vehicles
    K. Parkavi Kathirvelu
    G. G. V. Sandeep
    J. Swathi
    Rengarajan Amirtharajan
    R. Balasubramanian
    Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 2021, 45 : 1311 - 1324
  • [27] Genetic Algorithm Based Coil System Optimization for Wireless Power Charging of Electric Vehicles
    Ning, Puqi
    Onar, Omer
    Miller, John
    2013 IEEE TRANSPORTATION ELECTRIFICATION CONFERENCE AND EXPO (ITEC), 2013,
  • [28] Adaptive Distributed Laser Charging for Efficient Wireless Power Transfer
    Zhang, Qingqing
    Shi, Xiaojun
    Liu, Qingwen
    Wu, Jun
    Xia, Pengfei
    Liao, Yong
    2017 IEEE 86TH VEHICULAR TECHNOLOGY CONFERENCE (VTC-FALL), 2017,
  • [29] Optimization of Circular Coil Design for Wireless Power Transfer System in Electric Vehicle Battery Charging Applications
    Ravi Kumar Yakala
    Sumit Pramanick
    Debi Prasad Nayak
    Manish Kumar
    Transactions of the Indian National Academy of Engineering, 2021, 6 (3) : 765 - 774
  • [30] Coil Design and Magnetic Shielding of a Resonant Wireless Power Transfer System for Electric Vehicle Battery Charging
    Dolara, A.
    Leva, S.
    Longo, M.
    Castelli-Dezza, F.
    Mauri, M.
    2017 IEEE 6TH INTERNATIONAL CONFERENCE ON RENEWABLE ENERGY RESEARCH AND APPLICATIONS (ICRERA), 2017, : 200 - 205