Some constructions of 3-pre-Lie-Rinehart algebras

被引:1
作者
Ben Hassine, Abdelkader [1 ,2 ]
Chtioui, Taoufik [3 ]
Nasser, Nawel [2 ]
机构
[1] Univ Bisha, Coll Sci, Dept Math, Bisha, Saudi Arabia
[2] Univ Sfax, Fac Sci, Sfax, Tunisia
[3] Univ Gabes, Fac Sci Gabes, Gabes 6072, Tunisia
关键词
3-Lie-Rinehart algebra; 3-pre-Lie-Rinehart algebra; Lie-Rinehart algebra; relative Rota-Baxter operator; representation; trace function; LIE-RINEHART ALGEBRA; BAXTER ALGEBRAS;
D O I
10.1080/00927872.2024.2413699
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
3-Lie-Rinehart algebras are an algebraic axiomatization of the basic properties of Filippov algebroids (for n = 3). The purpose of this paper is to introduce the notion of relative Rota-Baxter operators on a 3-Lie-Rinehart algebra and give some classical characterizations. Next, we define 3-pre-Lie-Rinehart algebras which can be seen as a dendrification of 3-Lie-Rinehart algebras by means of relative Rota-Baxter operators. Moreover, we introduce the notion of trace functions on Lie-Rinehart algebra and pre-Lie-Rinehart algebra to construct their induced 3-Lie-Rinehart algebra and 3-pre-Lie-Rinehart algebra, respectively.
引用
收藏
页码:1470 / 1487
页数:18
相关论文
共 40 条
[1]   Super 3-Lie Algebras Induced by Super Lie Algebras [J].
Abramov, Viktor .
ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2017, 27 (01) :9-16
[2]   Structure and Cohomology of 3-Lie Algebras Induced by Lie Algebras [J].
Arnlind, Joakim ;
Kitouni, Abdennour ;
Makhlouf, Abdenacer ;
Silvestrov, Sergei .
ALGEBRA, GEOMETRY AND MATHEMATICAL PHYSICS (AGMP), 2014, 85 :123-144
[3]   Construction of n-Lie algebras and n-ary Hom-Nambu-Lie algebras [J].
Arnlind, Joakim ;
Makhlouf, Abdenacer ;
Silvestrov, Sergei .
JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (12)
[4]   Ternary Hom-Nambu-Lie algebras induced by Hom-Lie algebras [J].
Arnlind, Joakim ;
Makhlouf, Abdenacer ;
Silvestrov, Sergei .
JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (04)
[5]   SIMPLY TRANSITIVE GROUPS OF AFFINE MOTIONS [J].
AUSLANDER, L .
AMERICAN JOURNAL OF MATHEMATICS, 1977, 99 (04) :809-826
[6]  
Awata H, 2001, J HIGH ENERGY PHYS
[7]   Bialgebras, the classical Yang-Baxter equation and Manin triples for 3-Lie algebras [J].
Bai, Chengming ;
Guo, Li ;
Sheng, Yunhe .
ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2019, 23 (01) :27-74
[8]  
Bai R., 2019, ARXIV
[9]   Realizations of 3-Lie algebras [J].
Bai, Ruipu ;
Bai, Chengming ;
Wang, Jinxiu .
JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (06)
[10]  
Baxter G.:., 1960, Pacific J. Math, V10, P731