Microfiber-Based Triboelectric Acoustic Sensors Enable Self-Powered Ultrasonic Localization and Tracking Underwater

被引:1
|
作者
Dong, Kai [1 ,2 ]
Zhang, Yihan [3 ]
Fan, Xiaoxuan [1 ,2 ]
Cao, Leo N. Y. [1 ,2 ]
Peng, Xiao [4 ]
机构
[1] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, Beijing 101400, Peoples R China
[2] Univ Chinese Acad Sci, Sch Nanosci & Technol, Beijing 100049, Peoples R China
[3] Univ Sussex, Sch Engn & Informat, Brighton BN1 9RH, England
[4] Tsinghua Univ, Dept Chem, Key Lab Organ Optoelect & Mol Engn, Minist Educ, Beijing 100084, Peoples R China
来源
ACS SENSORS | 2025年 / 10卷 / 02期
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
triboelectric nanogenerator; microfiber-based; self-powered; underwater acoustic detection; localizationand trajectory tracking; NANOGENERATOR; VIBRATION;
D O I
10.1021/acssensors.4c03283
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Underwater ultrasonic detection is critical for marine security, playing a vital role in resource development, environmental protection, and national defense. However, existing detection systems, which primarily rely on active scanning technologies, are hindered by high costs, significant energy demands, and challenges in achieving large-scale deployment. Here, we introduce a microfiber-based triboelectric acoustic sensor (MTAS) featuring a core-shell hierarchical structure, offering a self-powered solution for precise measurement of underwater ultrasound source distance. By leveraging the principles of contact electrification/triboelectrification and electrostatic induction, the MTAS efficiently converts complex ultrasonic vibrations into real-time electrical signals. The MTAS demonstrates rapid response times as low as 8.6 mu s, a high signal-to-noise ratio of 29.8 dB, and the capability to detect ultrasonic sources with power levels above 1.6 W via time-difference-of-arrival analysis. To address large-scale sea applications, we further propose a distributed network that integrates multiple MTAS units capable of precise ultrasonic source localization and real-time motion trajectory visualization. This innovation represents a transformative approach, combining self-powered operation, ease of deployment, and high imperceptibility, paving the way for large-area, energy-efficient submarine security systems. Such advancements redefine the paradigm of underwater target detection, aligning technological innovation with the pressing demands of marine safety and environmental sustainability.
引用
收藏
页码:1366 / 1377
页数:12
相关论文
共 50 条
  • [21] Triboelectric Sensor for Self-Powered Tracking of Object Motion inside Tubing
    Su, Yuanjie
    Zhu, Guang
    Yang, Weiqing
    Yang, Jin
    Chen, Jun
    Jing, Qingshen
    Wu, Zhiming
    Jiang, Yadong
    Wang, Zhong Lin
    ACS NANO, 2014, 8 (04) : 3843 - 3850
  • [22] Self-Powered Magnetic Sensor Based on a Triboelectric Nanogenerator
    Yang, Ya
    Lin, Long
    Zhang, Yue
    Jing, Qingshen
    Hou, Te-Chien
    Wang, Zhong Lin
    ACS NANO, 2012, 6 (11) : 10378 - 10383
  • [23] Triboelectric Nanogenerator Based Self-Powered Tilt Sensor
    Iqbal, Faisal
    Shafi, Muhammad
    Khattak, Muhammad Irfan
    Nawaz, Aamir
    TEHNICKI VJESNIK-TECHNICAL GAZETTE, 2018, 25 (02): : 325 - 328
  • [24] 2D Layered Materials Based Triboelectric Self-Powered Sensors
    Rajaboina, Rakesh Kumar
    Khanapuram, Uday Kumar
    Kulandaivel, Anu
    ADVANCED SENSOR RESEARCH, 2024, 3 (10):
  • [25] Paper-Based Origami Triboelectric Nanogenerators and Self-Powered Pressure Sensors
    Yang, Po-Kang
    Lin, Zong-Hong
    Pradel, Ken C.
    Lin, Long
    Li, Xiuhan
    Wen, Xiaonan
    He, Jr-Hau
    Wang, Zhong Lin
    ACS NANO, 2015, 9 (01) : 901 - 907
  • [26] Self-powered nanofiber-based screen-print triboelectric sensors for respiratory monitoring
    Cao, Ran
    Wang, Jiaona
    Zhao, Shuyu
    Yang, Wei
    Yuan, Zuqing
    Yin, Yingying
    Du, Xinyu
    Li, Nian-Wu
    Zhang, Xiuling
    Li, Xiuyan
    Wang, Zhong Lin
    Li, Congju
    NANO RESEARCH, 2018, 11 (07) : 3771 - 3779
  • [27] Walking energy harvesting and self-powered tracking system based on triboelectric nanogenerators
    Yao, Mingliang
    Xie, Guangzhong
    Gong, Qichen
    Su, Yuanjie
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2020, 11 : 1590 - 1595
  • [28] Walking energy harvesting and self-powered tracking system based on triboelectric nanogenerators
    Yao M.
    Xie G.
    Gong Q.
    Su Y.
    Beilstein Journal of Nanotechnology, 2020, 11 : 1590 - 1595
  • [29] Double helix triboelectric nanogenerator for self-powered weight sensors
    Fu, Jiangming
    Xia, Kequan
    Xu, Zhiwei
    SENSORS AND ACTUATORS A-PHYSICAL, 2021, 323
  • [30] A Single-Electrode Based Triboelectric Nanogenerator as Self-Powered Tracking System
    Yang, Ya
    Zhou, Yu Sheng
    Zhang, Hulin
    Liu, Ying
    Lee, Sangmin
    Wang, Zhong Lin
    ADVANCED MATERIALS, 2013, 25 (45) : 6594 - 6601