RankMean: Module-Level Importance Score for Merging Fine-tuned Large Language Models

被引:0
作者
Perin, Gabriel J. [1 ,2 ]
Chen, Xuxi [2 ]
Liu, Shusen [3 ]
Kailkhura, Bhavya [3 ]
Wang, Zhangyang [2 ]
Gallagher, Brian [3 ]
机构
[1] Univ Sao Paulo, Sao Paulo, Brazil
[2] Univ Texas Austin, Austin, TX 78712 USA
[3] Lawrance Livermore Natl Lab, Livermore, CA USA
来源
FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: ACL 2024 | 2024年
基金
巴西圣保罗研究基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Traditionally, developing new language models (LMs) capable of addressing multiple tasks involves fine-tuning pre-trained LMs using a wide collection of datasets, a process that often incurs significant computational expenses. Model merging emerges as a cost-effective alternative, allowing the integration of existing models fine-tuned on different tasks into a single model that performs well across all tasks, eliminating the need for additional training. In this paper, we propose RankMean, an algorithm for merging fine-tuned LMs without requiring any downstream data. RankMean determines merging coefficients based on the relative rankings of weight change magnitudes and applies these coefficients for module-wise integration of various fine-tuned models. Our experimental results demonstrate that RankMean outperforms existing baseline methods on multiple benchmarks. The code is available at github.com/VITA-Group/RankMean.
引用
收藏
页码:1776 / 1782
页数:7
相关论文
共 27 条
[1]  
Ainsworth SK, 2022, Arxiv, DOI arXiv:2209.04836
[2]  
Bartoldson BR, 2023, J MACH LEARN RES, V24
[3]  
Chaudhary S., 2023, Code alpaca: An instruction-following llama model for code generation
[4]  
Chen Mark, 2021, Evaluating large language models trained on code.
[5]  
Cobbe K, 2021, Arxiv, DOI [arXiv:2110.14168, DOI 10.48550/ARXIV.2110.14168]
[6]  
Dai DM, 2022, PROCEEDINGS OF THE 60TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022), VOL 1: (LONG PAPERS), P8493
[7]  
Dubois Y, 2024, Arxiv, DOI [arXiv:2305.14387, DOI 10.48550/ARXIV.2305.14387]
[8]  
Falcon LLM Team, 2023, Arxiv, DOI [arXiv:2311.16867, DOI 10.48550/ARXIV.2311.16867]
[9]  
Frankle J., 2020, P MACHINE LEARNING R, P3259, DOI 10.5555/3524938.3525243
[10]  
Hendrycks D., 2021, arXiv