Precision psychiatry needs causal inference

被引:0
作者
Bernstorff, Martin [1 ,2 ,3 ]
Jefsen, Oskar Hougaard [4 ,5 ]
机构
[1] Aarhus Univ Hosp, Dept Affect Disorders, Psychiat, Aarhus, Denmark
[2] Aarhus Univ, Dept Clin Med, Aarhus, Denmark
[3] Aarhus Univ, Ctr Humanities Comp, Aarhus, Denmark
[4] Aarhus Univ Hosp, Psychosis Res Unit, Psychiat, Aarhus, Denmark
[5] Aarhus Univ, Ctr Funct Integrat Neurosci, Aarhus, Denmark
关键词
Machine learning; causality; psychiatry; precision medicine; POSTTRAUMATIC-STRESS-DISORDER; PREDICTION;
D O I
10.1017/neu.2024.29
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Objective: Psychiatric research applies statistical methods that can be divided in two frameworks: causal inference and prediction. Recent proposals suggest a down-prioritisation of causal inference and argue that prediction paves the road to 'precision psychiatry' (i.e., individualised treatment). In this perspective, we critically appraise these proposals.Methods: We outline strengths and weaknesses of causal inference and prediction frameworks and describe the link between clinical decision-making and counterfactual predictions (i.e., causality). We describe three key causal structures that, if not handled correctly, may cause erroneous interpretations, and three pitfalls in prediction research.Results: Prediction and causal inference are both needed in psychiatric research and their relative importance is context-dependent. When individualised treatment decisions are needed, causal inference is necessary.Conclusion: This perspective defends the importance of causal inference for precision psychiatry.
引用
收藏
页数:5
相关论文
共 29 条
[21]   Body mass index and cognitive decline among community-living older adults: the modifying effect of physical activity [J].
Pitrou, Isabelle ;
Vasiliadis, Helen-Maria ;
Hudon, Carol .
EUROPEAN REVIEW OF AGING AND PHYSICAL ACTIVITY, 2022, 19 (01)
[22]   Causal inference and counterfactual prediction in machine learning for actionable healthcare [J].
Prosperi, Mattia ;
Guo, Yi ;
Sperrin, Matt ;
Koopman, James S. ;
Min, Jae S. ;
He, Xing ;
Rich, Shannan ;
Wang, Mo ;
Buchan, Iain E. ;
Bian, Jiang .
NATURE MACHINE INTELLIGENCE, 2020, 2 (07) :369-375
[23]   Prediction of Individual Response to Electroconvulsive Therapy via Machine Learning on Structural Magnetic Resonance Imaging Data [J].
Redlich, Ronny ;
Opel, Nils ;
Grotegerd, Dominik ;
Dohm, Katharina ;
Zaremba, Dario ;
Buerger, Christian ;
Muenker, Sandra ;
Muehlmann, Lisa ;
Wahl, Patricia ;
Heindel, Walter ;
Arolt, Volker ;
Alferink, Judith ;
Zwanzger, Peter ;
Zavorotnyy, Maxim ;
Kugel, Harald ;
Dannlowski, Udo .
JAMA PSYCHIATRY, 2016, 73 (06) :557-564
[24]   Implementing Precision Psychiatry: A Systematic Review of Individualized Prediction Models for Clinical Practice [J].
Salazar de Pablo, Gonzalo ;
Studerus, Erich ;
Vaquerizo-Serrano, Julio ;
Irving, Jessica ;
Catalan, Ana ;
Oliver, Dominic ;
Baldwin, Helen ;
Danese, Andrea ;
Fazel, Seena ;
Steyerberg, Ewout W. ;
Stahl, Daniel ;
Fusar-Poli, Paolo .
SCHIZOPHRENIA BULLETIN, 2021, 47 (02) :284-297
[25]  
Scott David, 2011, Issues Ment Health Nurs, V32, P589, DOI 10.3109/01612840.2011.569846
[26]   Robust causal inference using directed acyclic graphs: the R package 'dagitty' [J].
Textor, Johannes ;
van der Zander, Benito ;
Gilthorpe, Mark S. ;
Liskiewicz, Maciej ;
Ellison, George T. H. .
INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2016, 45 (06) :1887-1894
[27]  
Watkins Edward R., 2009, Cognitive Behaviour Therapy, V38, P8, DOI 10.1080/16506070902980695
[28]   Time to reality check the promises of machine learning-powered precision medicine [J].
Wilkinson, Jack ;
Arnold, Kellyn F. ;
Murray, Eleanor J. ;
van Smeden, Maarten ;
Carr, Kareem ;
Sippy, Rachel ;
de Kamps, Marc ;
Beam, Andrew ;
Konigorski, Stefan ;
Lippert, Christoph ;
Gilthorpe, Mark S. ;
Tennant, Peter W. G. .
LANCET DIGITAL HEALTH, 2020, 2 (12) :E677-E680
[29]   Suicide mortality-among individuals receiving treatment for depression in the veterans affairs health system: Associations with patient and treatment setting characteristics [J].
Zivin, Kara ;
Kim, Myra ;
McCarthy, John F. ;
Austin, Karen L. ;
Hoggatt, Katherine J. ;
Walters, Heather ;
Valenstein, Marcia .
AMERICAN JOURNAL OF PUBLIC HEALTH, 2007, 97 (12) :2193-2198