Precision psychiatry needs causal inference

被引:0
作者
Bernstorff, Martin [1 ,2 ,3 ]
Jefsen, Oskar Hougaard [4 ,5 ]
机构
[1] Aarhus Univ Hosp, Dept Affect Disorders, Psychiat, Aarhus, Denmark
[2] Aarhus Univ, Dept Clin Med, Aarhus, Denmark
[3] Aarhus Univ, Ctr Humanities Comp, Aarhus, Denmark
[4] Aarhus Univ Hosp, Psychosis Res Unit, Psychiat, Aarhus, Denmark
[5] Aarhus Univ, Ctr Funct Integrat Neurosci, Aarhus, Denmark
关键词
Machine learning; causality; psychiatry; precision medicine; POSTTRAUMATIC-STRESS-DISORDER; PREDICTION;
D O I
10.1017/neu.2024.29
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Objective: Psychiatric research applies statistical methods that can be divided in two frameworks: causal inference and prediction. Recent proposals suggest a down-prioritisation of causal inference and argue that prediction paves the road to 'precision psychiatry' (i.e., individualised treatment). In this perspective, we critically appraise these proposals.Methods: We outline strengths and weaknesses of causal inference and prediction frameworks and describe the link between clinical decision-making and counterfactual predictions (i.e., causality). We describe three key causal structures that, if not handled correctly, may cause erroneous interpretations, and three pitfalls in prediction research.Results: Prediction and causal inference are both needed in psychiatric research and their relative importance is context-dependent. When individualised treatment decisions are needed, causal inference is necessary.Conclusion: This perspective defends the importance of causal inference for precision psychiatry.
引用
收藏
页数:5
相关论文
共 29 条
[1]   Statistical modeling: The two cultures [J].
Breiman, L .
STATISTICAL SCIENCE, 2001, 16 (03) :199-215
[2]   Prediction, Not Association, Paves the Road to Precision Medicine [J].
Bzdok, Danilo ;
Varoquaux, Gael ;
Steyerberg, Ewout W. .
JAMA PSYCHIATRY, 2021, 78 (02) :127-128
[3]   POINTS OF SIGNIFICANCE Statistics versus machine learning [J].
Bzdok, Danilo ;
Altman, Naomi ;
Krzywinski, Martin .
NATURE METHODS, 2018, 15 (04) :232-233
[4]   The promise of machine learning in predicting treatment outcomes in psychiatry [J].
Chekroud, Adam M. ;
Bondar, Julia ;
Delgadillo, Jaime ;
Doherty, Gavin ;
Wasil, Akash ;
Fokkema, Marjolein ;
Cohen, Zachary ;
Belgrave, Danielle ;
DeRubeis, Robert ;
Iniesta, Raquel ;
Dwyer, Dominic ;
Choi, Karmel .
WORLD PSYCHIATRY, 2021, 20 (02) :154-170
[5]   Association of Suicide Prevention Interventions With Subsequent Suicide Attempts, Linkage to Follow-up Care, and Depression Symptoms for Acute Care Settings A Systematic Review and Meta-analysis [J].
Doupnik, Stephanie K. ;
Rudd, Brittany ;
Schmutte, Timothy ;
Worsley, Diana ;
Bowden, Cadence F. ;
McCarthy, Erin ;
Eggan, Elliott ;
Bridge, Jeffrey A. ;
Marcus, Steven C. .
JAMA PSYCHIATRY, 2020, 77 (10) :1021-1030
[6]  
Eberhardt F., 2017, Internat. J. Data Sci. Anal., V3, P81, DOI [DOI 10.1007/S41060-016-0038-6, 10.1007/s41060-016-0038-6]
[7]   Suicide risk in people with post-traumatic stress disorder: A cohort study of 3.1 million people in Sweden [J].
Fox, Verity ;
Dalman, Christina ;
Dal, Henrik ;
Hollander, Anna-Clara ;
Kirkbride, James B. ;
Pitman, Alexandra .
JOURNAL OF AFFECTIVE DISORDERS, 2021, 279 :609-616
[8]   Posttraumatic Stress Disorder and Completed Suicide [J].
Gradus, Jaimie L. ;
Qin, Ping ;
Lincoln, Alisa K. ;
Miller, Matthew ;
Lawler, Elizabeth ;
Sorensen, Henrik Toft ;
Lash, Timothy L. .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2010, 171 (06) :721-727
[9]  
Guglin M., 2023, EUR HEART J, V44, p655.1144, DOI [10.1093/eurheartj/ehad655.1144, DOI 10.1093/EURHEARTJ/EHAD655.1144]
[10]   Using Big Data to Emulate a Target Trial When a Randomized Trial Is Not Available [J].
Hernan, Miguel A. ;
Robins, James M. .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2016, 183 (08) :758-764