On the weak∗ separability of the space of Lipschitz functions

被引:0
作者
Candido, Leandro [1 ]
Cuth, Marek [2 ]
Vejnar, Benjamin [2 ]
机构
[1] Univ Fed Sao Paulo UNIFESP, Dept Matemat, Inst Ciencia & Tecnol, Sao Jose Dos Campos, SP, Brazil
[2] Charles Univ Prague, Fac Math & Phys, Dept Math Anal, Sokolovska 83, Prague 8, Czech Republic
基金
巴西圣保罗研究基金会;
关键词
Lipschitz function; Lipschitz-free space; Nonseparable Banach spaces; Weak* topology; BANACH-SPACES; EMBEDDINGS;
D O I
10.1016/j.jfa.2025.110925
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We conjecture that whenever M is a metric space of density at most continuum, then the space of Lipschitz functions is w & lowast;- separable. We prove the conjecture for several classes of metric spaces including all the Banach spaces with a projectional skeleton, Banach spaces with a w & lowast;-separable dual unit ball and locally separable complete metric spaces. (c) 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:26
相关论文
共 40 条
[11]   ON THE GEOMETRY OF BANACH SPACES OF THE FORM Lip0(C(K)) [J].
Candido, Leandro ;
Kaufmann, Pedro L. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (08) :3335-3345
[12]   ON LARGE l1-SUMS OF LIPSCHITZ-FREE SPACES AND APPLICATIONS [J].
Candido, Leondro ;
Guzman, Hector H. T. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (03) :1135-1145
[13]   ON THE STRUCTURE OF LIPSCHITZ-FREE SPACES [J].
Cuth, Marek ;
Doucha, Michal ;
Wojtaszczyk, Przemyslaw .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (09) :3833-3846
[14]  
Dancer E. N., 1979, Bulletin of the Australian Mathematical Society, V20, P253, DOI 10.1017/S0004972700010935
[15]  
Engelking R., 1989, Sigma Series in Pure Mathematics, V6
[16]   Injectivity of Lipschitz Operators [J].
Garcia-Lirola, Luis C. ;
Petitjean, Colin ;
Prochazka, Antonin .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2023, 46 (02)
[17]   Lipschitz-free Banach spaces [J].
Godefroy, G ;
Kalton, NJ .
STUDIA MATHEMATICA, 2003, 159 (01) :121-141
[18]  
Godefroy G., 2015, COMMENT MATH HELV, V55, P89, DOI [DOI 10.14708/CM.V55I2.1104, 10.14708/cm.v55i2.1104 (cit. on p. 14, DOI 10.14708/CM.V55I2.1104(CIT.ONP.14]
[19]   On the diameter of the Banach-Mazur set [J].
Godefroy, Gilles .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2010, 60 (01) :95-100
[20]  
Guirao A.J., 2016, OPEN PROBLEMS GEOMET