On the weak∗ separability of the space of Lipschitz functions

被引:0
作者
Candido, Leandro [1 ]
Cuth, Marek [2 ]
Vejnar, Benjamin [2 ]
机构
[1] Univ Fed Sao Paulo UNIFESP, Dept Matemat, Inst Ciencia & Tecnol, Sao Jose Dos Campos, SP, Brazil
[2] Charles Univ Prague, Fac Math & Phys, Dept Math Anal, Sokolovska 83, Prague 8, Czech Republic
基金
巴西圣保罗研究基金会;
关键词
Lipschitz function; Lipschitz-free space; Nonseparable Banach spaces; Weak* topology; BANACH-SPACES; EMBEDDINGS;
D O I
10.1016/j.jfa.2025.110925
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We conjecture that whenever M is a metric space of density at most continuum, then the space of Lipschitz functions is w & lowast;- separable. We prove the conjecture for several classes of metric spaces including all the Banach spaces with a projectional skeleton, Banach spaces with a w & lowast;-separable dual unit ball and locally separable complete metric spaces. (c) 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:26
相关论文
共 40 条
[1]   UNIFORM EQUIVALENCE BETWEEN BANACH-SPACES [J].
AHARONI, I ;
LINDENSTRAUSS, J .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 84 (02) :281-283
[2]  
Albiac F, 2016, GRAD TEXTS MATH, V233, P1, DOI 10.1007/978-3-319-31557-7
[3]   Lipschitz Algebras and Lipschitz-Free Spaces Over Unbounded Metric Spaces [J].
Albiac, Fernando ;
Ansorena, Jose L. ;
Cuth, Marek ;
Doucha, Michal .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (20) :16327-16362
[4]  
Aliaga R.J., 2024, Comment. Math. Univ. Carol.
[5]   Supports in Lipschitz-free spaces and applications to extremal structure [J].
Aliaga, Ramon J. ;
Pernecka, Eva ;
Petitjean, Colin ;
Prochazka, Antonin .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 489 (01)
[6]   A WEAK* SEPARABLE C(K)* SPACE WHOSE UNIT BALL IS NOT WEAK* SEPARABLE [J].
Aviles, A. ;
Plebanek, G. ;
Rodriguez, J. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 366 (09) :4733-4753
[7]   Continuous Operators from Spaces of Lipschitz Functions [J].
Bargetz, Christian ;
Kakol, Jerzy ;
Sobota, Damian .
RESULTS IN MATHEMATICS, 2025, 80 (01)
[8]  
Benyamini Y., 2000, Geometric Nonlinear Functional Analysis, VI
[9]   On universal Banach spaces of density continuum [J].
Brech, Christina ;
Koszmider, Piotr .
ISRAEL JOURNAL OF MATHEMATICS, 2012, 190 (01) :93-110
[10]  
Cabello Sanchez F., 2023, CAMBRIDGE STUDIES AD, V203