Structure-Exploiting Distributionally Robust Control of Non-Homogeneous Markov Jump Linear Systems

被引:1
作者
Gallant, Melanie [1 ,2 ]
Mark, Christoph [1 ]
Pazzaglia, Paolo [1 ]
von Keler, Johannes [1 ]
Beermann, Laura [1 ]
Schmidt, Kevin [1 ]
Maggio, Martina [2 ]
机构
[1] Robert Bosch GmbH, Bosch Res, D-71272 Renningen, Germany
[2] Saarland Univ, Dept Comp Sci, D-66123 Saarbrucken, Germany
来源
IEEE CONTROL SYSTEMS LETTERS | 2024年 / 8卷
关键词
Time-varying systems; Probabilistic logic; Uncertainty; Switches; Control systems; Linear matrix inequalities; State feedback; Stability criteria; Robust control; Real-time systems; Stochastic systems; switched systems; Markov processes; uncertain systems; MODEL-PREDICTIVE CONTROL;
D O I
10.1109/LCSYS.2024.3520348
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The contribution of this letter is the mean-square stabilization of discrete-time Markov jump linear systems with mixed known, unknown, and time-varying transition probabilities. To handle uncertainties in the transition probabilities, we develop a control strategy utilizing mode-dependent static state feedback controllers and introduce data-based ambiguity sets that, extending existing literature, account for known, unknown and time-varying probabilities. These ambiguity sets are constructed using estimated transition matrices and probabilistic bounds derived from the Dvoretzky-Kiefer-Wolfowitz inequality. We validate the effectiveness of our method with numerical simulations on a control system subject to deadline overruns, demonstrating the improvements of incorporating partial knowledge of the transition probabilities.
引用
收藏
页码:3069 / 3074
页数:6
相关论文
共 19 条
[1]  
ApS M., 2024, The MOSEK optimization toolbox for MATLAB manual
[2]  
ATTOUCH H, 1986, ASPECTS MATH ITS APP, P125, DOI [DOI 10.1016/s0924-6509(09)70252-1, 10.1016/S0924-6509(09)70252-1, DOI 10.1016/S0924-6509(09)70252-1]
[3]  
Cervin A., 2005, P IFAC WORLD C, P219
[4]   Uncertain uncertainty in data-driven stochastic optimization: towards structured ambiguity sets [J].
Chaouach, Lotfi M. ;
Boskos, Dimitris ;
Oomen, Tom .
2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, :4776-4781
[5]  
Costa O.L.V., 2005, PROBABILITY ITS APPL
[6]   Stochastic stability of jump linear systems [J].
Fang, YG ;
Loparo, KA .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2002, 47 (07) :1204-1208
[7]  
Lofberg J., 2004, P IEEE INT C ROB AUT, P284, DOI [10.1109/CACSD.2004.1393890, DOI 10.1109/CACSD.2004.1393890]
[8]  
Lun YZ, 2016, IEEE DECIS CONTR P, P5527, DOI 10.1109/CDC.2016.7799118
[9]  
Mark C, 2024, P AMER CONTR CONF, P4705, DOI 10.23919/ACC60939.2024.10645009
[10]   Recursively Feasible Data-Driven Distributionally Robust Model Predictive Control With Additive Disturbances [J].
Mark, Christoph ;
Liu, Steven .
IEEE CONTROL SYSTEMS LETTERS, 2023, 7 :526-531