A Spatial Data Focusing and Generalized Time-Invariant Frequency Diverse Array Approach for High Precision Range-Angle-Based Geocasting

被引:0
作者
Molineaux, Guylian [1 ,2 ]
Horlin, Francois [3 ]
De Doncker, Philippe [3 ]
Sarrazin, Julien [1 ,2 ]
机构
[1] Sorbonne Univ, CNRS, Lab Genie Elect & Elect Paris, F-75252 Paris, France
[2] Univ Paris Saclay, CentraleSupelec, CNRS, Lab Genie Elect & Elect Paris, F-91192 Gif Sur Yvette, France
[3] Univ Libre Bruxelles ULB, OPERA Wireless Commun Grp, B-1050 Brussels, Belgium
关键词
Geocasting; spatial data focusing (SDF); frequency diverse array (FDA); single-antenna multiple-channel (SAMC); time-invariance; RADAR;
D O I
10.1109/TWC.2023.3348536
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A novel unified frequency diverse array (FDA) and spatial data focusing (SDF) approach is proposed to simultaneously overcome time-variance and precision constraints of conventional FDA in geocasting, i.e., spatially confined broadcasting, scenarios. This paper describes a free space FDA-based SDF (FDA-SDF) system model for 2-dimensional range-angle-based focusing, including a generalized multi-purpose baseband approach for time-invariant FDA, complemented by SDF processing for improved spatial focusing precision and reduced array size. Comprehensive analytical derivations - general for any frequency offset configuration - describe the geographical FDA-SDF properties and design rules, such as geocast delivery zone steering, location, uniqueness, and size. Simulations of the proposed scheme validate theoretical derivations and demonstrate FDA-SDF's superior spatial precision and minimal design complexity. In particular, using novel alternating logarithmic frequency offsets, a 3-antenna FDA-SDF setup is shown to match the radial and azimuthal precision of its beamforming-based FDA counterpart using, respectively, 64 and 24 antennas.
引用
收藏
页码:8345 / 8356
页数:12
相关论文
共 39 条
[1]   Frequency diverse array radars [J].
Antonik, Paul ;
Wicks, Michael C. ;
Griffiths, Hugh D. ;
Baker, Christopher J. .
2006 IEEE RADAR CONFERENCE, VOLS 1 AND 2, 2006, :215-+
[2]  
Balanis C., 2016, ANTENNA THEORY ANAL, V4th ed., P285
[3]   Beam Pattern Synthesis for an FDA Radar with Hamming Window- Based Nonuniform Frequency Offset [J].
Basit, Abdul ;
Qureshi, Ijaz Mansoor ;
Khan, Wasim ;
Rehman, Shuja Ur ;
Khan, Muhammad Mohsin .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2017, 16 :2283-2286
[4]   Accurate Models of Time-Invariant Beampatterns for Frequency Diverse Arrays [J].
Chen, Kejin ;
Yang, Shiwen ;
Chen, Yikai ;
Qu, Shi-Wei .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2019, 67 (05) :3022-3029
[5]   On the general BER expression of one- and two-dimensional amplitude modulations [J].
Cho, KK ;
Yoon, D .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2002, 50 (07) :1074-1080
[6]  
Cohen H., 2007, Number Theory: Tools and Diophantine Equations, V1, P339
[7]   Directional Modulation Technique for Phased Arrays [J].
Daly, Michael P. ;
Bernhard, Jennifer T. .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2009, 57 (09) :2633-2640
[8]   Physical Limitation of Range-Domain Secrecy Using Frequency Diverse Arrays [J].
Ding, Yuan ;
Narbudowicz, Adam ;
Goussetis, George .
IEEE ACCESS, 2020, 8 :63302-63309
[9]   Efficient Time-Stable Geocast Routing in Delay-Tolerant Vehicular Ad-Hoc Networks [J].
Gallego-Tercero, Luis R. ;
Menchaca-Mendez, Rolando ;
Rivero-Angeles, Mario E. ;
Menchaca-Mendez, Ricardo .
IEEE ACCESS, 2020, 8 (08) :171034-171048
[10]  
Goldsmith A., 2005, Wireless Communications, V1st, P333