Hydrogenation of HOCO and formation of interstellar CO2: a not so straightforward relation

被引:0
作者
Molpeceres, German [1 ]
Enrique-Romero, Joan [2 ]
Ishibashi, Atsuki [3 ]
Oba, Yasuhiro [4 ]
Hidaka, Hiroshi [4 ]
Lamberts, Thanja [2 ,5 ]
Aikawa, Yuri [6 ]
Watanabe, Naoki [4 ]
机构
[1] CSIC, Inst Fis Fundamental, Dept Astrofis Mol, C Serrano 121,113 Bis,121, E-28006 Madrid, Spain
[2] Leiden Univ, Leiden Inst Chem, NL-2300 RA Leiden, Netherlands
[3] Univ Tokyo, Komaba Inst Sci, 4-6-1 Komaba,Meguro, Tokyo 1538902, Japan
[4] Hokkaido Univ, Inst Low Temp Sci, Sapporo, Hokkaido 0600819, Japan
[5] Leiden Univ, Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands
[6] Univ Tokyo, Grad Sch Sci, Dept Astron, Tokyo 1130033, Japan
基金
日本学术振兴会;
关键词
astrochemistry; molecular data; methods: numerical; ISM: molecules; COMPLEX ORGANIC-MOLECULES; ENERGETIC OH RADICALS; BASIS-SETS; PERTURBATION-THEORY; SURFACE-REACTIONS; PLUS CO; QUANTUM; ICE; DYNAMICS; EVOLUTION;
D O I
10.1093/mnras/staf383
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Carbon dioxide (CO2) is one of the most important interstellar molecules. While it is considered that it forms on the surface of interstellar dust grains, the exact contribution of different chemical mechanisms is still poorly constrained. Traditionally it is deemed that the CO + OH reaction occurring on top of ices is the main reaction path for its formation. Recent investigations showed that in reality the reaction presents a more complex mechanism, requiring an additional H-abstraction step. Building on our previous works, we carried out a detailed investigation of such H abstraction reactions with the hydrogen atom as a reactant for the abstraction reaction. We found an unconventional chemistry for this reaction, markedly depending on the isomeric form of the HOCO radical prior to reaction. The favoured reactions are t-HOCO + H -> CO + H2O, c-HOCO + H -> CO2 + H-2, and t/c-HOCO + H -> c/t-HCOOH. We estimate bounds for the rate constants of the less favoured reaction channels, t-HOCO + H -> CO2 + H and c-HOCO + H -> CO + H2O, to be approximately 10(4-6)s(-1). However, these estimates should be interpreted cautiously due to the significant role of quantum tunnelling in these reactions and the complex electronic structure of the involved molecules, which complicates their study. Our findings underscore the need for detailed investigation into the chemistry of interstellar CO2 and pave the way for a re-evaluation of its primary formation mechanisms in the interstellar medium.
引用
收藏
页码:1565 / 1575
页数:11
相关论文
共 65 条
  • [1] Andersson K., Malmqvist P. A., Roos B. O., Sadlej A. J., Wolinski K., J. Phys. Chem, 94, (1990)
  • [2] Aquilante F., Et al., J. Chem. Phys, 152, (2020)
  • [3] Arasa C., Van Hemert M. C., Van Dishoeck E. F., Kroes G. J., J. Phys. Chem. A, 117, (2013)
  • [4] Asgeirsson V., Jonsson H., Wikfeldt K. T., J. Phys. Chem. C, 121, (2017)
  • [5] Becke A. D., J. Chem. Phys, 98, (1993)
  • [6] Caracciolo A., Et al., J. Phys. Chem. Lett, 9, (2018)
  • [7] Clement A., Et al., A&A, 675, (2023)
  • [8] Garc?a de la Concepcion J., Jimenez-Serra I., Carlos Corchado J., Rivilla V. M., Mart?n-Pintado J., ApJ, 912, (2021)
  • [9] Garc?a de la Concepcion J., Et al., A&A, 658, (2022)
  • [10] Dartois E., Et al., Nat. Astron, 8, pp. 359-367, (2024)