Practical machine learning model selection and interpretation for organophosphorus flame retardancy in Epoxy resin

被引:1
作者
Li, Jiajun [1 ]
Zou, Bin [2 ]
Bekeshev, Amirbek [3 ]
Akhmetova, Marzhan [4 ]
Orynbassar, Raigul [5 ]
Wang, Xin [1 ]
Hu, Yuan [1 ]
机构
[1] Univ Sci & Technol China, State Key Lab Fire Sci, 96 Jinzhai Rd, Hefei 230026, Anhui, Peoples R China
[2] China Acad Safely Sci & Technol, Beijing 100012, Peoples R China
[3] K Zhubanov Aktobe Reg State Univ, Lab Polymer Composites, Aliya Moldagulova Ave 34, Aktobe 030000, Kazakhstan
[4] K Zhubanov Aktobe Reg State Univ, Dept Phys, Aliya Moldagulova Ave 34, Aktobe 030000, Kazakhstan
[5] K Zhubanov Aktobe Reg State Univ, Dept Chem & Chem Technol, Aliya Moldagulova Ave 34, Aktobe 030000, Kazakhstan
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Machine learning; Organophosphorus flame retardant; Epoxy resin; XGBoost algorithm;
D O I
10.1016/j.polymdegradstab.2025.111209
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The traditional trial-and-error method for developing organophosphorus flame retardants is time-consuming and expensive. This work constructed machine learning models for limiting oxygen index (LOI), peak heat release rate (PHRR), and UL-94 for epoxy resin on the basis of the collected multifactor database, including the structure of organophosphorus flame retardants, addition amounts, matrix combustion performance, and flux. The training and test sets were divided on the basis of molecular groups to avoid data leakage within the same molecule group, in contrast to conventional random splitting. The best results for LOI and PHRR prediction were achieved via the XGBoost algorithm and ECFP4 fingerprints, with mean absolute errors of 1.61% and 125.5 kW/m2 on the test set, respectively. For UL-94 classification, the MACCS with XGBoost achieved 79% accuracy. The Shapley additive explanation for the model indicated that the addition amount and matrix combustion performance data were the two most important features. This work could help develop a more accurate and reliable prediction model for flame retardancy.
引用
收藏
页数:11
相关论文
共 47 条
[1]  
alvaDesc Mauri A., 2020, Methods Pharmac. Toxic., P801
[2]   The properties of known drugs .1. Molecular frameworks [J].
Bemis, GW ;
Murcko, MA .
JOURNAL OF MEDICINAL CHEMISTRY, 1996, 39 (15) :2887-2893
[3]   Machine learning-enabled rational design of organic flame retardants for enhanced fire safety of epoxy resin composites [J].
Chen, Zhongwei ;
Yang, Boran ;
Song, Nannan ;
Liu, Yufan ;
Rong, Feng ;
Zhang, Xida ;
Chen, Tingting ;
Zhang, Qingwu ;
Jiang, Juncheng ;
Chen, Tao ;
Yu, Yuan ;
Liu, Lian X. .
COMPOSITES COMMUNICATIONS, 2023, 44
[4]   Machine learning-guided design of organic phosphorus-containing flame retardants to improve the limiting oxygen index of epoxy resins [J].
Chen, Zhongwei ;
Yang, Boran ;
Song, Nannan ;
Chen, Tingting ;
Zhang, Qingwu ;
Li, Changxin ;
Jiang, Juncheng ;
Chen, Tao ;
Yu, Yuan ;
Liu, Lian X. .
CHEMICAL ENGINEERING JOURNAL, 2023, 455
[5]   An insight into pyrolysis and flame retardant mechanism of unsaturated polyester resin with different valance states of phosphorus structures [J].
Chu, Fukai ;
Zhou, Xia ;
Mu, Xiaowei ;
Zhu, Yulu ;
Cai, Wei ;
Zhou, Yifan ;
Xu, Zhoumei ;
Zou, Bin ;
Mi, Zhenzhen ;
Hu, Weizhao .
POLYMER DEGRADATION AND STABILITY, 2022, 202
[6]   Finding defects in glasses through machine learning [J].
Ciarella, Simone ;
Khomenko, Dmytro ;
Berthier, Ludovic ;
Mocanu, Felix C. ;
Reichman, David R. ;
Scalliet, Camille ;
Zamponi, Francesco .
NATURE COMMUNICATIONS, 2023, 14 (01)
[7]   Correlations of limiting oxygen index with structural polyphosphoester features by QSPR approaches [J].
Funar-Timofei, Simona ;
Iliescu, Smaranda ;
Suzuki, Takahiro .
STRUCTURAL CHEMISTRY, 2014, 25 (06) :1847-1863
[8]  
Gaytan-Hernandez Daniela, 2023, J Cheminform, V15, P100, DOI [10.1186/s13321-023-00770-4, 10.1186/s13321-023-00770-4]
[9]   A guide to machine learning for biologists [J].
Greener, Joe G. ;
Kandathil, Shaun M. ;
Moffat, Lewis ;
Jones, David T. .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2022, 23 (01) :40-55
[10]   Phosphorylated cardanol-formaldehyde oligomers as flame-retardant and toughening agents for epoxy thermosets [J].
Guo, Wenwen ;
Wang, Xin ;
Huang, Jiali ;
Mu, Xiaowei ;
Cai, Wei ;
Song, Lei ;
Hu, Yuan .
CHEMICAL ENGINEERING JOURNAL, 2021, 423