Extended vertical tensor complementarity problems with finite solution sets

被引:0
作者
Li, Xue-liu [1 ,2 ]
Jiang, Yi-rong [2 ]
Yang, Yuning [1 ]
Tang, Guo-ji [2 ]
机构
[1] Guangxi Univ, Coll Math & Informat Sci, Ctr Appl Math Guangxi, Nanning 530004, Peoples R China
[2] Guangxi Minzu Univ, Ctr Appl Math Guangxi, Sch Math Sci, Guangxi Key Lab Hybrid Computat & IC Design Anal, Nanning 530006, Peoples R China
基金
中国国家自然科学基金;
关键词
Extended vertical tensor complementarity problem; Vertical non-degenerate (VND) tensor tuple; Strong vertical non-degenerate (SVND) tensor tuple; Finiteness property; BOUNDS;
D O I
10.1007/s10898-025-01471-y
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The main propose of the present paper is to investigate the finiteness property of the solution set for the extended vertical tensor complementarity problem (EVTCP). To this end, two classes of structured tensor tuples, that is, vertical non-degenerate (VND) tensor tuples and strong vertical non-degenerate (SVND) tensor tuples , are introduced. Furthermore, the relationship and some properties about them are discussed. Based on the structured tensor tuples, the finiteness property of the solution set of EVTCP is investigated. The results obtained in this paper are extensions of those proposed by Palpandi and Sharma (J Optim Theory Appl 190:951-965, 2021) from the tensor complementarity problem (TCP) to EVTCP.
引用
收藏
页码:431 / 452
页数:22
相关论文
共 36 条
  • [1] [Anonymous], 1992, The Linear Complementarity Problem
  • [2] Global Uniqueness and Solvability for Tensor Complementarity Problems
    Bai, Xue-Li
    Huang, Zheng-Hai
    Wang, Yong
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2016, 170 (01) : 72 - 84
  • [3] The Generalized Order Tensor Complementarity Problems
    Che, Maolin
    Qi, Liqun
    Wei, Yimin
    [J]. NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2020, 13 (01): : 131 - 149
  • [4] The Existence and Uniqueness of Solution for Tensor Complementarity Problem and Related Systems
    Cui, Lu-Bin
    Fan, Yu-Dong
    Song, Yi-Sheng
    Wu, Shi-Liang
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2022, 192 (01) : 321 - 334
  • [5] The GUS-Property and Modulus-Based Methods for Tensor Complementarity Problems
    Dai, Ping-Fan
    Wu, Shi-Liang
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2022, 195 (03) : 976 - 1006
  • [6] A mixed integer programming approach to the tensor complementarity problem
    Du, Shouqiang
    Zhang, Liping
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2019, 73 (04) : 789 - 800
  • [7] Facchinei F., 2003, Finite-dimensional variational inequalities and complementarity problems
  • [8] Engineering and economic applications of complementarity problems
    Ferris, MC
    Pang, JS
    [J]. SIAM REVIEW, 1997, 39 (04) : 669 - 713
  • [9] THE GENERALIZED ORDER LINEAR COMPLEMENTARITY-PROBLEM
    GOWDA, MS
    SZNAJDER, R
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1994, 15 (03) : 779 - 795
  • [10] Gowda MS, 1996, INT J GAME THEORY, V25, P1