Multiparametric MRI-based Radiomics Analysis for Prediction of Lymph Node Metastasis and Survival Outcome in Gastric Cancer: A Dual-center Study

被引:1
作者
Song, Ruirui [1 ]
Chen, Wujie
Zhang, Junjie
Zhang, Jianxin
Du, Yan [2 ]
Ren, Jialiang
Shi, Lei
Cui, Yanfen
Yang, Xiaotang [2 ]
机构
[1] Shanxi Med Univ, Canc Hosp, Taiyuan 030013, Peoples R China
[2] Shanxi Med Univ, Shanxi Prov Canc Hosp, Shanxi Hosp, Canc Hosp,Chinese Acad Med Sci,Canc Hosp,Dept Radi, Taiyuan 030013, Peoples R China
关键词
Gastric Cancer; Magnetic resonance imaging; Radiomics; Lymphatic Metastasis; GASTRECTOMY; RECURRENCE; CT;
D O I
10.1016/j.acra.2024.05.032
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Rationale and Objectives: Gastric cancer (GC) is highly heterogeneous, and accurate preoperative assessment of lymph node status remains challenging. We aimed to develop a multiparametric MRI-based model for predicting lymph node metastasis (LNM) in GC and to explore its prognostic implications. Materials and Methods: In this dual-center retrospective study, 479 GC patients undergoing preoperative multiparametric MRI before radical gastrectomy were enrolled. 1595 imaging features were extracted from T2-weighted imaging, apparent diffusion coefficient maps, and contrast- enhanced T1-weighted imaging (cT1WI), respectively. Feature selection steps, including the Boruta and Simulated Annealing algorithms, were conducted to identify key features. Different radiomics models (RMs) based on the single- and multiple-sequence were constructed. The performance of various RMs in predicting LNM was assessed in terms of discrimination, calibration, and clinical usefulness. Additionally, Kaplan- Meier survival curves were employed to estimate differences in disease-free survival (DFS) and overall survival (OS). Results: The multi-sequence radiomics model (MRM) achieved area under the curves (AUCs) of 0.774 [95 % confidence interval (CI), 0.703-0.845], 0.721 (95 % CI, 0.593-0.850), and 0.720 (95 % CI, 0.639-0.801) in the training and two validation cohorts, respectively, outperforming the single-sequence RMs. Notably, the RM derived from cT1WI demonstrated superior performance compared to the other two single-sequence models. Furthermore, the proposed MRM exhibited a significant association with DFS and OS in GC patients (both P < 0.05). Conclusion: The multiparametric MRI-based radiomics model, derived from primary lesions, demonstrated moderate performance in predicting LNM and survival outcomes in patients with GC, which could provide valuable insights for personalized treatment strategies.
引用
收藏
页码:4900 / 4911
页数:12
相关论文
共 41 条
[1]   Gastric Cancer, Version 2.2022 [J].
Ajani, Jaffer A. ;
D'Amico, Thomas A. ;
Bentrem, David J. ;
Chao, Joseph ;
Cooke, David ;
Corvera, Carlos ;
Das, Prajnan ;
Enzinger, Peter C. ;
Enzler, Thomas ;
Fanta, Paul ;
Farjah, Farhood ;
Gerdes, Hans ;
Gibson, Michael K. ;
Hochwald, Steven ;
Hofstetter, Wayne L. ;
Ilson, David H. ;
Keswani, Rajesh N. ;
Kim, Sunnie ;
Kleinberg, Lawrence R. ;
Klempner, Samuel J. ;
Lacy, Jill ;
Ly, Quan P. ;
Matkowskyj, Kristina A. ;
McNamara, Michael ;
Mulcahy, Mary F. ;
Outlaw, Darryl ;
Park, Haeseong ;
Perry, Kyle A. ;
Pimiento, Jose ;
Poultsides, George A. ;
Reznik, Scott ;
Roses, Robert E. ;
Strong, Vivian E. ;
Su, Stacey ;
Wang, Hanlin L. ;
Wiesner, Georgia ;
Willett, Christopher G. ;
Yakoub, Danny ;
Yoon, Harry ;
McMillian, Nicole ;
Pluchino, Lenora A. .
JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2022, 20 (02) :167-192
[2]   Contribution of diffusion weighted MRI to diagnosis and staging in gastric tumors and comparison with multi-detector computed tomography [J].
Arslan, Harun ;
Ozbay, Mehmet Fatih ;
Calli, Iskan ;
Dogan, Erkan ;
Celik, Sebahattin ;
Batur, Abdussamet ;
Bora, Aydin ;
Yavuz, Alpaslan ;
Bulut, Mehmet Deniz ;
Ozgokce, Mesut ;
Kotan, Mehmet Cetin .
RADIOLOGY AND ONCOLOGY, 2017, 51 (01) :23-29
[3]   Computed tomography radiomics for the prediction of thymic epithelial tumor histology, TNM stage and myasthenia gravis [J].
Bluethgen, Christian ;
Patella, Miriam ;
Euler, Andre ;
Baessler, Bettina ;
Martini, Katharina ;
von Spiczak, Jochen ;
Schneiter, Didier ;
Opitz, Isabelle ;
Frauenfelder, Thomas .
PLOS ONE, 2021, 16 (12)
[4]   Imaging strategies in the management of gastric cancer: current role and future potential of MRI [J].
Borggreve, Alicia S. ;
Goense, Lucas ;
Brenkman, Hylke J. F. ;
Mook, Stella ;
Meijer, Gert J. ;
Wessels, Frank J. ;
Verheij, Marcel ;
Jansen, Edwin P. M. ;
van Hillegersberg, Richard ;
van Rossum, Peter S. N. ;
Ruurda, Jelle P. .
BRITISH JOURNAL OF RADIOLOGY, 2019, 92 (1097)
[5]   Evaluation of Lymph Node Metastasis in Advanced Gastric Cancer Using Magnetic Resonance Imaging-Based Radiomics [J].
Chen, Wujie ;
Wang, Siwen ;
Dong, Di ;
Gao, Xuning ;
Zhou, Kefeng ;
Li, Jiaying ;
Lv, Bin ;
Li, Hailin ;
Wu, Xiangjun ;
Fang, Mengjie ;
Tian, Jie ;
Xu, Maosheng .
FRONTIERS IN ONCOLOGY, 2019, 9
[6]   Esophagus and Stomach Is There a Role for MR Imaging? [J].
De Cobelli, Francesco ;
Palumbo, Diego ;
Albarello, Luca ;
Rosati, Riccardo ;
Giganti, Francesco .
MAGNETIC RESONANCE IMAGING CLINICS OF NORTH AMERICA, 2020, 28 (01) :1-+
[7]   Quality control of lymph node dissection in the Dutch Gastric Cancer Trial [J].
de Steur, W. O. ;
Hartgrink, H. H. ;
Dikken, J. L. ;
Putter, H. ;
van de Velde, C. J. H. .
BRITISH JOURNAL OF SURGERY, 2015, 102 (11) :1388-1393
[8]   Randomized clinical trial comparing survival after D1 or D2 gastrectomy for gastric cancer [J].
Degiuli, M. ;
Sasako, M. ;
Ponti, A. ;
Vendrame, A. ;
Tomatis, M. ;
Mazza, C. ;
Borasi, A. ;
Capussotti, L. ;
Fronda, G. ;
Morino, M. .
BRITISH JOURNAL OF SURGERY, 2014, 101 (02) :23-31
[9]   Clinical significance of lymph node metastasis in gastric cancer [J].
Deng, Jing-Yu ;
Liang, Han .
WORLD JOURNAL OF GASTROENTEROLOGY, 2014, 20 (14) :3967-3975
[10]   Radiomics: Images Are More than Pictures, They Are Data [J].
Gillies, Robert J. ;
Kinahan, Paul E. ;
Hricak, Hedvig .
RADIOLOGY, 2016, 278 (02) :563-577