Multipurpose Image Colorization: A Novel Pipeline Using Convolutional Neural Networks

被引:0
作者
Gomez Moreno, Ivannia [1 ,2 ]
Orozco-Rosas, Ulises [1 ]
Picosa, Kenia [1 ]
Rosing, Tajana [2 ]
机构
[1] CETYS Univ, Ave CETYS Univ 4, Tajana Rosing 22210, Baja California, Mexico
[2] Univ Calif San Diego, 9500 Gilman Dr, La Jolla, CA 92093 USA
来源
OPTICS AND PHOTONICS FOR INFORMATION PROCESSING XVIII | 2024年 / 13136卷
关键词
Convolutional neural networks; Image processing; Deep learning; Colorization algorithms;
D O I
10.1117/12.3028369
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The colorization of monochromatic images has demonstrated utility in enhancing human comprehension of images and boosting the accuracy of succeeding image-processing tasks. Nonetheless, current fully automated colorization methodologies often exhibit optimal performance based on the input image's nature and the employed algorithms' architectural specifics. In response to this challenge, this paper introduces a novel methodology aimed at effectively predicting the most suitable colorization model for a given input image. This comprehensive approach is characterized by exceptional accuracy across diverse datasets.
引用
收藏
页数:10
相关论文
共 34 条
  • [21] Image Colorization using CycleGAN with semantic and spatial rationality
    Li, Bin
    Lu, Yi
    Pang, Wei
    Xu, Huixin
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (14) : 21641 - 21655
  • [22] Exploring the Limits of Weakly Supervised Pretraining
    Mahajan, Dhruv
    Girshick, Ross
    Ramanathan, Vignesh
    He, Kaiming
    Paluri, Manohar
    Li, Yixuan
    Bharambe, Ashwin
    van der Maaten, Laurens
    [J]. COMPUTER VISION - ECCV 2018, PT II, 2018, 11206 : 185 - 201
  • [23] Pang JH, 2013, INT CONF ACOUST SPEE, P1578, DOI 10.1109/ICASSP.2013.6637917
  • [24] Deep Learning for Automatic Colorization of Legacy Grayscale Aerial Photographs
    Poterek, Quentin
    Herrault, Pierre-Alexis
    Skupinski, Grzegorz
    Sheeren, David
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 2899 - 2915
  • [25] MobileNetV2: Inverted Residuals and Linear Bottlenecks
    Sandler, Mark
    Howard, Andrew
    Zhu, Menglong
    Zhmoginov, Andrey
    Chen, Liang-Chieh
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 4510 - 4520
  • [26] Shankar R. S., 2020, 2020 INT C SYST COMP, P1
  • [27] Tan MX, 2019, PR MACH LEARN RES, V97
  • [28] Technology I., What are convolutional neural networks (cnns)?
  • [29] Tolstikhin I, 2021, ADV NEUR IN, V34
  • [30] Xiao JX, 2010, PROC CVPR IEEE, P3485, DOI 10.1109/CVPR.2010.5539970