Long short-term memory with wavelet decomposition for wind speed predicting based on SHM data

被引:0
|
作者
Ding, Yang [1 ,2 ]
Liang, Ning-Yi [3 ,4 ]
Zhang, Xue-Song [1 ]
Wang, Jun [2 ]
Zeng, Chao-Qun [5 ]
机构
[1] Chongqing Jiaotong Univ, State Key Lab Mt Bridge & Tunnel Engn, Chongqing 400074, Peoples R China
[2] Hangzhou City Univ, Dept Civil Engn, Hangzhou 310015, Peoples R China
[3] Changsha Univ Sci & Technol, Sch Civil Engn, Changsha 410114, Peoples R China
[4] Zhejiang Sci Res Inst Transportat, Hangzhou 310023, Peoples R China
[5] Shenzhen Polytech Univ, Sch Automobile & Transportat, Shenzhen 518055, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
long-span bridge; long short-term memory; structural health monitoring; wavelet decomposition; wind speed prediction; MODEL; SIMULATION; NETWORK;
D O I
10.12989/sss.2025.35.2.065
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The wind field environment surrounding long-span bridges is characterized by its complexity and variability, resulting in wind speed exhibiting random, nonlinear, and uncertain behavior. To enhance bridge safety and mitigate the impact of wind speed, it is crucial to establish a reliable wind speed prediction model. In this study, a structural health monitoring (SHM) system was deployed on a long-span bridge to collect extensive wind speed data, which was subsequently denoised using the wavelet decomposition (WD) method. Leveraging the long short-term memory (LSTM) approach, a wind speed prediction model (WD-LSTM) was developed. The study focuses on investigating the effects of three different thresholds (Bayesian threshold, SURE threshold, and Minmax threshold) in the WD method, the number of hidden units (2, 4, 8, 16, 32, 64, 128, 256, and 512) in the WD-LSTM model, and the number of inputs (one-step prediction, five-step prediction, ten-step prediction, and twenty-step prediction) in the WD-LSTM model on the prediction performance of wind speed. Evaluation metrics such as RMSE and R2 are employed for this analysis. Furthermore, the calculation time of the WD-LSTM prediction models with different hidden units and inputs is compared. Finally, an optimal WD-LSTM prediction model is proposed, taking into account both prediction accuracy and calculation time.
引用
收藏
页码:65 / 75
页数:11
相关论文
共 50 条
  • [1] Ultra short term probability prediction of wind power based on wavelet decomposition and long short-term memory network
    Wang, Peng
    Sun, Yonghui
    Thai, Suwei
    Wu, Xiaopeng
    Zhou, Yan
    Hou, Dongchen
    PROCEEDINGS OF THE 2019 31ST CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2019), 2019, : 2061 - 2066
  • [2] Short-term wind speed forecasting model for wind farm based on wavelet decomposition
    Cao Lei
    Li Ran
    2008 THIRD INTERNATIONAL CONFERENCE ON ELECTRIC UTILITY DEREGULATION AND RESTRUCTURING AND POWER TECHNOLOGIES, VOLS 1-6, 2008, : 2525 - 2529
  • [3] A forecast model of short-term wind speed based on the attention mechanism and long short-term memory
    Xing, Wang
    Qi-liang, Wu
    Gui-rong, Tan
    Dai-li, Qian
    Ke, Zhou
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (15) : 45603 - 45623
  • [4] A forecast model of short-term wind speed based on the attention mechanism and long short-term memory
    Wang Xing
    Wu Qi-liang
    Tan Gui-rong
    Qian Dai-li
    Zhou Ke
    Multimedia Tools and Applications, 2024, 83 : 45603 - 45623
  • [5] Ultra-short Term Wind Speed Prediction Using Mathematical Morphology Decomposition and Long Short-term Memory
    Li, Mengshi
    Zhang, Zhiyuan
    Ji, Tianyao
    Wu, Q. H.
    CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, 2020, 6 (04): : 890 - 900
  • [6] Short-term wind speed forecasting using the wavelet decomposition and AdaBoost technique in wind farm of East China
    Shao, Haijian
    Deng, Xing
    Cui, Fang
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2016, 10 (11) : 2585 - 2592
  • [7] A Short-Term Wind Speed Forecasting Model Based on a Multi-Variable Long Short-Term Memory Network
    Xie, Anqi
    Yang, Hao
    Chen, Jing
    Sheng, Li
    Zhang, Qian
    ATMOSPHERE, 2021, 12 (05)
  • [8] A Hybrid Short-Term Wind Speed Forecasting Model Based on Wavelet Decomposition and Extreme Learning Machine
    Zhang, Yihui
    Wang, He
    Hu, Zhijian
    Wang, Kai
    Li, Yan
    Huang, Dongshan
    Ning, Wenhui
    Zhang, Chengxue
    ENERGY DEVELOPMENT, PTS 1-4, 2014, 860-863 : 361 - +
  • [9] A long short-term memory based wind power prediction method
    Huang, Yufeng
    Ding, Min
    Fang, Zhijian
    Wang, Qingyi
    Tan, Zhili
    Lil, Danyun
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 5927 - 5932
  • [10] Short-term wind power prediction based on combined long short-term memory
    Zhao, Yuyang
    Li, Lincong
    Guo, Yingjun
    Shi, Boming
    Sun, Hexu
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2024, 18 (05) : 931 - 940