Advancements in robotic arm-based 3D bioprinting for biomedical applications

被引:8
作者
Li, Kai [1 ,2 ]
Huang, Wenhui [1 ,2 ]
Guo, Haitao [1 ,2 ]
Liu, Yanyan [3 ]
Chen, Shuxian [1 ,2 ]
Liu, Heng [1 ,4 ]
Gu, Qi [1 ,2 ,5 ]
机构
[1] Chinese Acad Sci, State Key Lab Membrane Biol, Inst Zool, Beijing 100101, Peoples R China
[2] Univ Chinese Acad Sci, Savaid Med Sch, Beijing 101499, Peoples R China
[3] Beijing Inst Fash Technol, Sch Mat Design & Engn, Beijing 100029, Peoples R China
[4] Capital Med Univ, Beijing Jishuitan Hosp, Dept Orthopaed, Beijing 100035, Peoples R China
[5] Beijing Inst Stem Cell & Regenerat Med, Bioinspired Engn Grp, Beijing 100101, Peoples R China
来源
LIFE MEDICINE | 2023年 / 2卷 / 06期
基金
中国国家自然科学基金;
关键词
3D bioprinting; robot arm-based bioprinting; tissue engineering; in situ bioprinting; hydrogel; TECHNOLOGY;
D O I
10.1093/lifemedi/lnad046
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
3D bioprinting emerges as a critical tool in biofabricating functional 3D tissue or organ equivalents for regenerative medicine. Bioprinting techniques have been making strides in integrating automation, customization, and digitalization in coping with diverse tissue engineering scenarios. The convergence of robotic arm-based 3D bioprinting techniques, especially in situ 3D bioprinting, is a versatile toolbox in the industrial field, promising for biomedical application and clinical research. In this review, we first introduce conceptualized modalities of robotic arm-based bioprinting from a mechanical perspective, which involves configurative categories of current robot arms regarding conventional bioprinting strategies. Recent advances in robotic arm-based bioprinting in tissue engineering have been summarized in distinct tissues and organs. Ultimately, we systematically discuss relative advantages, disadvantages, challenges, and future perspectives from bench to bedside for biomedical application.
引用
收藏
页数:16
相关论文
共 48 条
[1]   A Preliminary Study for an Intraoperative 3D Bioprinting Treatment of Severe Burn Injuries [J].
Albouy, Marion ;
Desanlis, Adeline ;
Brosset, Sophie ;
Auxenfans, Celine ;
Courtial, Edwin-Joffrey ;
Eli, Kyle ;
Cambron, Scott ;
Palmer, Justin ;
Vidal, Luciano ;
Thepot, Amelie ;
Dos Santos, Morgan ;
Marquette, Christophe A. .
PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN, 2022, 10 (01) :E4056
[2]   Towards artificial tissue models: past, present, and future of 3D bioprinting [J].
Arslan-Yildiz, Ahu ;
El Assal, Rami ;
Chen, Pu ;
Guven, Sinan ;
Inci, Fatih ;
Demirci, Utkan .
BIOFABRICATION, 2016, 8 (01)
[3]   Tissue engineering with the aid of inkjet printers [J].
Campbell, Phil G. ;
Weiss, Lee E. .
EXPERT OPINION ON BIOLOGICAL THERAPY, 2007, 7 (08) :1123-1127
[4]   Circumferential alignment of vascular smooth muscle cells in a circular microfluidic channel [J].
Choi, Jong Seob ;
Piao, Yunxian ;
Seo, Tae Seok .
BIOMATERIALS, 2014, 35 (01) :63-70
[5]   Fibre-infused gel scaffolds guide cardiomyocyte alignment in 3D-printed ventricles [J].
Choi, Suji ;
Lee, Keel Yong ;
Kim, Sean L. ;
MacQueen, Luke A. ;
Chang, Huibin ;
Zimmerman, John F. ;
Jin, Qianru ;
Peters, Michael M. ;
Ardona, Herdeline Ann M. ;
Liu, Xujie ;
Heiler, Ann-Caroline ;
Gabardi, Rudy ;
Richardson, Collin ;
Pu, William T. ;
Bausch, Andreas R. ;
Parker, Kevin Kit .
NATURE MATERIALS, 2023, 22 (08) :1039-+
[7]   Additive manufacturing for in situ repair of osteochondral defects [J].
Cohen, Daniel L. ;
Lipton, Jeffrey I. ;
Bonassar, Lawrence J. ;
Lipson, Hod .
BIOFABRICATION, 2010, 2 (03)
[8]   Support-Free Volume Printing by Multi-Axis Motion [J].
Dai, Chengkai ;
Wang, Charlie C. L. ;
Wu, Chenmeng ;
Lefebvre, Sylvain ;
Fang, Guoxin ;
Liu, Yong-Jin .
ACM TRANSACTIONS ON GRAPHICS, 2018, 37 (04)
[9]   A FRESH SLATE for 3D bioprinting [J].
Dasgupta, Queeny ;
Black, Lauren D., III .
SCIENCE, 2019, 365 (6452) :446-447
[10]   Essential steps in bioprinting: From pre- to post-bioprinting [J].
Datta, Pallab ;
Barui, Ananya ;
Wu, Yang ;
Ozbolat, Veli ;
Moncal, Kazim K. ;
Ozbolat, Ibrahim T. .
BIOTECHNOLOGY ADVANCES, 2018, 36 (05) :1481-1504