Objective To address the complexities of distinguishing truth from falsehood in the context of the COVID-19 infodemic, this paper focuses on utilizing deep learning models for infodemic ternary classification detection.Methods Eight commonly used deep learning models are employed to categorize collected records as true, false, or uncertain. These models include fastText, three models based on recurrent neural networks, two models based on convolutional neural networks, and two transformer-based models.Results Precision, recall, and F1-score metrics for each category, along with overall accuracy, are presented to establish benchmark results. Additionally, a comprehensive analysis of the confusion matrix is conducted to provide insights into the models' performance.Conclusion Given the limited availability of infodemic records and the relatively modest size of the two tested data sets, models with pretrained embeddings or simpler architectures tend to outperform their more complex counterparts. This highlights the potential efficiency of pretrained or simpler models for ternary classification in COVID-19 infodemic detection and underscores the need for further research in this area.
机构:
Univ Malaysia Sabah, Fac Comp & Informat, Kota Kinabalu 88400, MalaysiaUniv Malaysia Sabah, Fac Comp & Informat, Kota Kinabalu 88400, Malaysia
Sufian, Maisarah Mohd
Moung, Ervin Gubin
论文数: 0引用数: 0
h-index: 0
机构:
Univ Malaysia Sabah, Fac Comp & Informat, Kota Kinabalu 88400, Malaysia
Univ Malaysia Sabah, Data Technol & Applicat DaTA Res Grp, Kota Kinabalu 88400, Sabah, MalaysiaUniv Malaysia Sabah, Fac Comp & Informat, Kota Kinabalu 88400, Malaysia
Moung, Ervin Gubin
Hijazi, Mohd Hanafi Ahmad
论文数: 0引用数: 0
h-index: 0
机构:
Univ Malaysia Sabah, Fac Comp & Informat, Kota Kinabalu 88400, Malaysia
Univ Malaysia Sabah, Data Technol & Applicat DaTA Res Grp, Kota Kinabalu 88400, Sabah, MalaysiaUniv Malaysia Sabah, Fac Comp & Informat, Kota Kinabalu 88400, Malaysia
Hijazi, Mohd Hanafi Ahmad
Yahya, Farashazillah
论文数: 0引用数: 0
h-index: 0
机构:
Univ Malaysia Sabah, Fac Comp & Informat, Kota Kinabalu 88400, MalaysiaUniv Malaysia Sabah, Fac Comp & Informat, Kota Kinabalu 88400, Malaysia
Yahya, Farashazillah
Dargham, Jamal Ahmad
论文数: 0引用数: 0
h-index: 0
机构:
Univ Malaysia Sabah, Fac Engn, Kota Kinabalu 88400, MalaysiaUniv Malaysia Sabah, Fac Comp & Informat, Kota Kinabalu 88400, Malaysia
Dargham, Jamal Ahmad
Farzamnia, Ali
论文数: 0引用数: 0
h-index: 0
机构:
Univ Malaysia Sabah, Fac Engn, Kota Kinabalu 88400, MalaysiaUniv Malaysia Sabah, Fac Comp & Informat, Kota Kinabalu 88400, Malaysia
Farzamnia, Ali
Sia, Florence
论文数: 0引用数: 0
h-index: 0
机构:
Univ Malaysia Sabah, Fac Comp & Informat, Kota Kinabalu 88400, MalaysiaUniv Malaysia Sabah, Fac Comp & Informat, Kota Kinabalu 88400, Malaysia
Sia, Florence
Naim, Nur Faraha Mohd
论文数: 0引用数: 0
h-index: 0
机构:
Univ Malaysia Sabah, Fac Comp & Informat, Kota Kinabalu 88400, MalaysiaUniv Malaysia Sabah, Fac Comp & Informat, Kota Kinabalu 88400, Malaysia
机构:
Prince Mohammad Bin Fahd Univ, Ctr Artificial Intelligence, Khobar 31952, Saudi ArabiaPrince Mohammad Bin Fahd Univ, Ctr Artificial Intelligence, Khobar 31952, Saudi Arabia
机构:
Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100190, Peoples R China
Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, CAS Key Lab Mol Imaging, Beijing 100190, Peoples R ChinaUniv Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100190, Peoples R China
Li, Cong
Dong, Di
论文数: 0引用数: 0
h-index: 0
机构:
Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100190, Peoples R China
Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, CAS Key Lab Mol Imaging, Beijing 100190, Peoples R ChinaUniv Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100190, Peoples R China
Dong, Di
Li, Liang
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ, Renmin Hosp, Dept Radiol, Wuhan 430060, Peoples R ChinaUniv Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100190, Peoples R China
Li, Liang
Gong, Wei
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ, Renmin Hosp, Dept Radiol, Wuhan 430060, Peoples R ChinaUniv Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100190, Peoples R China
Gong, Wei
Li, Xiaohu
论文数: 0引用数: 0
h-index: 0
机构:
Anhui Med Univ, Affiliated Hosp 1, Dept Radiol, Hefei 230022, Peoples R ChinaUniv Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100190, Peoples R China
Li, Xiaohu
Bai, Yan
论文数: 0引用数: 0
h-index: 0
机构:
Zhengzhou Univ, Henan Prov Peoples Hosp, Dept Med Imaging, Zhengzhou 450003, Henan, Peoples R China
Zhengzhou Univ, Peoples Hosp, Zhengzhou 450003, Henan, Peoples R ChinaUniv Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100190, Peoples R China
Bai, Yan
Wang, Meiyun
论文数: 0引用数: 0
h-index: 0
机构:
Zhengzhou Univ, Henan Prov Peoples Hosp, Dept Med Imaging, Zhengzhou 450003, Henan, Peoples R China
Zhengzhou Univ, Peoples Hosp, Zhengzhou 450003, Henan, Peoples R ChinaUniv Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100190, Peoples R China
Wang, Meiyun
Hu, Zhenhua
论文数: 0引用数: 0
h-index: 0
机构:
Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100190, Peoples R China
Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, CAS Key Lab Mol Imaging, Beijing 100190, Peoples R ChinaUniv Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100190, Peoples R China
Hu, Zhenhua
Zha, Yunfei
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ, Renmin Hosp, Dept Radiol, Wuhan 430060, Peoples R ChinaUniv Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100190, Peoples R China
Zha, Yunfei
Tian, Jie
论文数: 0引用数: 0
h-index: 0
机构:
Beihang Univ, Sch Med, Beijing Adv Innovat Ctr Big Data Based Precis Med, Beijing 100190, Peoples R China
Guangzhou First Peoples Hosp, Dept Radiol, Guangzhou 510000, Peoples R ChinaUniv Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100190, Peoples R China