Advantages of the zebrafish tumor xenograft model: the evaluation of efficacy in cancer therapy and the application to the study of lncRNAs

被引:2
作者
Hu, Chengwu [1 ]
Sun, Ling [1 ]
Chen, Jianqing [1 ]
Lyu, Zhengbing [1 ]
Yuan, Chen [2 ]
Jiang, Xiaofeng [1 ,2 ]
机构
[1] Zhejiang Sci Tech Univ, Coll Life Sci & Med, Zhejiang Prov Key Lab Silkworm Bioreactor & Biomed, Hangzhou, Peoples R China
[2] First Peoples Hosp Huzhou, Pediat Dept, Huzhou, Peoples R China
关键词
zebrafish model; anti-tumor research; cancer therapy; lncRNAs; immunotherapy; LONG NONCODING RNAS; EMBRYONIC-DEVELOPMENT; DRUG DISCOVERY; XIST RNA; ANGIOGENESIS; INHIBITION; SEQUENCE; DISEASE; VISUALIZATION; EXPRESSION;
D O I
10.3389/fimmu.2024.1483192
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
In the current preclinical anti-tumor researches, there is a general lack of an in vivo model that can quickly and efficiently screen effective anti-tumor drugs. As a species that is 87% genetically similar to humans, zebrafish have been widely used to model human diseases, and they are considered an alternative economic model for studying cancer development, proliferation, and metastasis. The zebrafish tumor xenograft model has been effectively used for cancer drug development at all levels, including target validation, and high-throughput screening of long non-coding RNAs (lncRNAs) that may be involved in tumor regulation. In this review, we provide a comprehensive overview of zebrafish as an in vivo model for cancer cell growth, migration, anti-tumor immunotherapy, and anti-tumor drug screening. In addition, the regulatory mechanisms of some active lncRNAs have been identified to play a role in the pathogenesis of cancer, but it is still necessary to take advantage of the efficient zebrafish model to screen and learn more about the role of these molecules in tumor development and migration. Current anti-tumor therapies are limited by severe toxicity and multidrug resistance. There is an urgent need for the cost-effective and efficient in vivo research tools to improve our understanding and overcome these problems. This paper reviews the different purposes of anti-tumor research using zebrafish model. We discuss the use of zebrafish in cancer cell proliferation and metastasis, identifying signaling pathways, cancer drug discovery and treatment development, and toxicity studies. Finally, this review highlights the limitations of the field and future directions to effectively utilize zebrafish as a highly efficient model for cancer treatment development.
引用
收藏
页数:11
相关论文
共 109 条
[31]   Pervasive Transcription of the Human Genome Produces Thousands of Previously Unidentified Long Intergenic Noncoding RNAs [J].
Hangauer, Matthew J. ;
Vaughn, Ian W. ;
McManus, Michael T. .
PLOS GENETICS, 2013, 9 (06)
[32]   Zebrafish Models of Cancer-New Insights on Modeling Human Cancer in a Non-Mammalian Vertebrate [J].
Hason, Martina ;
Bartunek, Petr .
GENES, 2019, 10 (11)
[33]   Oncogenic Role of THOR, a Conserved Cancer/Testis Long Non-coding RNA (vol 171, pg 1559, 2017) [J].
Hosono, Yasuyuki ;
Niknafs, Yashar S. ;
Prensner, John R. ;
Iyer, Matthew K. ;
Dhanasekaran, Saravana M. ;
Mehra, Rohit ;
Pitchiaya, Sethuramasundaram ;
Tien, Jean ;
Escara-Wilke, June ;
Poliakov, Anton ;
Chu, Shih-Chun ;
Saleh, Sahal ;
Sankar, Keerthana ;
Su, Fengyun ;
Guo, Shuling ;
Qiao, Yuanyuan ;
Freier, Susan M. ;
Bui, Huynh-Hoa ;
Cao, Xuhong ;
Malik, Rohit ;
Johnson, Timothy M. ;
Beer, David G. ;
Feng, Felix Y. ;
Zhou, Weibin ;
Chinnaiyan, Arul M. .
CELL, 2023, 186 (19) :4254-4255
[34]   Oncogenic Role of THOR, a Conserved Cancer/Testis Long Non-coding RNA [J].
Hosono, Yasuyuki ;
Niknafs, Yashar S. ;
Prensner, John R. ;
Iyer, Matthew K. ;
Dhanasekaran, Saravana M. ;
Mehra, Rohit ;
Pitchiaya, Sethuramasundaram ;
Tien, Jean ;
Escara-Wilke, June ;
Poliakov, Anton ;
Chu, Shih-Chun ;
Saleh, Sahal ;
Sankar, Keerthana ;
Su, Fengyun ;
Guo, Shuling ;
Qiao, Yuanyuan ;
Freier, Susan M. ;
Bui, Huynh-Hoa ;
Cao, Xuhong ;
Malik, Rohit ;
Johnson, Timothy M. ;
Beer, David G. ;
Feng, Felix Y. ;
Zhou, Weibin ;
Chinnaiyan, Arul M. .
CELL, 2017, 171 (07) :1559-+
[35]   A Large Intergenic Noncoding RNA Induced by p53 Mediates Global Gene Repression in the p53 Response [J].
Huarte, Maite ;
Guttman, Mitchell ;
Feldser, David ;
Garber, Manuel ;
Koziol, Magdalena J. ;
Kenzelmann-Broz, Daniela ;
Khalil, Ahmad M. ;
Zuk, Or ;
Amit, Ido ;
Rabani, Michal ;
Attardi, Laura D. ;
Regev, Aviv ;
Lander, Eric S. ;
Jacks, Tyler ;
Rinn, John L. .
CELL, 2010, 142 (03) :409-419
[36]   INDUCED EXPRESSION OF PD-1, A NOVEL MEMBER OF THE IMMUNOGLOBULIN GENE SUPERFAMILY, UPON PROGRAMMED CELL-DEATH [J].
ISHIDA, Y ;
AGATA, Y ;
SHIBAHARA, K ;
HONJO, T .
EMBO JOURNAL, 1992, 11 (11) :3887-3895
[37]   The vascular anatomy of the developing zebrafish: An atlas of embryonic and early larval development [J].
Isogai, S ;
Horiguchi, M ;
Weinstein, BM .
DEVELOPMENTAL BIOLOGY, 2001, 230 (02) :278-301
[38]   The landscape of long noncoding RNAs in the human transcriptome [J].
Iyer, Matthew K. ;
Niknafs, Yashar S. ;
Malik, Rohit ;
Singhal, Udit ;
Sahu, Anirban ;
Hosono, Yasuyuki ;
Barrette, Terrence R. ;
Prensner, John R. ;
Evans, Joseph R. ;
Zhao, Shuang ;
Poliakov, Anton ;
Cao, Xuhong ;
Dhanasekaran, Saravana M. ;
Wu, Yi-Mi ;
Robinson, Dan R. ;
Beer, David G. ;
Feng, Felix Y. ;
Iyer, Hariharan K. ;
Chinnaiyan, Arul M. .
NATURE GENETICS, 2015, 47 (03) :199-+
[39]   The translation of non-canonical open reading frames controls mucosal immunity [J].
Jackson, Ruaidhri ;
Kroehling, Lina ;
Khitun, Alexandra ;
Bailis, Will ;
Jarret, Abigail ;
York, Autumn G. ;
Khan, Omair M. ;
Brewer, J. Richard ;
Skadow, Mathias H. ;
Duizer, Coco ;
Harman, Christian C. D. ;
Chang, Lelina ;
Bielecki, Piotr ;
Solis, Angel G. ;
Steach, Holly R. ;
Slavoff, Sarah ;
Flavell, Richard A. .
NATURE, 2018, 564 (7736) :434-+
[40]   NEAT1 scaffolds RNA-binding proteins and the Microprocessor to globally enhance pri-miRNA processing [J].
Jiang, Li ;
Shao, Changwei ;
Wu, Qi-Jia ;
Chen, Geng ;
Zhou, Jie ;
Yang, Bo ;
Li, Hairi ;
Gou, Lan-Tao ;
Zhang, Yi ;
Wang, Yangming ;
Yeo, Gene W. ;
Zhou, Yu ;
Fu, Xiang-Dong .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2017, 24 (10) :816-+