One-step microbial cultivated bacterial cellulose membrane with 1D/2D nanochannels for efficient osmotic energy conversion

被引:0
作者
Song, Jiale [1 ]
Zhang, Ying [1 ]
Sheng, Nan [2 ,3 ]
Han, Zhiliang [1 ]
Qu, Xiangyang [1 ]
Zhou, Zhou [1 ]
Lv, Xiangguo [4 ]
Chen, Shiyan [1 ]
Wang, Huaping [1 ]
机构
[1] Donghua Univ, Coll Mat Sci & Engn, State Key Lab Adv Fiber Mat, Shanghai 201620, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Chem & Chem Engn, Shanghai 200240, Peoples R China
[3] Shanghai Shipbldg Technol Res Inst, Shanghai 200032, Peoples R China
[4] Shanghai Jiao Tong Univ, Renji Hosp, Sch Med, Dept Urol, Shanghai 200127, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
In situ culture; Bacteria cellulose; Composite nanochannels; Ion selectivity; Osmotic energy conversion; ELECTRODE; STATE; WATER;
D O I
10.1016/j.ijbiomac.2025.141655
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Osmotic energy conversion based on bio-inspired layered membranes has garnered significant interest. However, traditional biomass ion-selective membranes suffer from complex preparation, uneconomic nature, poor selectivity, and low power density. Here, we introduce scalable one-step in situ culture for nanofluidic membrane materials (GO/C-BC) composed of graphene oxide (GO), carboxymethyl cellulose sodium salt (CMC), and bacterial cellulose (BC). This preparation method effectively combines 1D and 2D nanochannels, reduces membrane resistance, and increases power density. The GO1.5/C-BC membrane exhibits excellent cation selectivity (0.89), achieving energy conversion efficiency of 31.40 % and delivering a power density of 7.49 W m- 2 under a 500fold concentration gradient. Stability tests under artificial seawater and river water conditions show only a 4.44 % decrease in power density after 20 d, highlighting its excellent stability and durability. Moreover, by connecting 28 power units in series, the membrane can produce a voltage output of -4 V. This scalable and environmentally friendly biomass material presents new avenues for osmotic energy conversion.
引用
收藏
页数:10
相关论文
共 60 条
  • [1] Xin W., Wen L., Two-dimensional materials for osmotic energy conversion, Chemical Journal of Chinese Universities-Chinese, 42, 2, pp. 445-455, (2021)
  • [2] Kim T., Logan B.E., Gorski C.A., High power densities created from salinity differences by combining electrode and Donnan potentials in a concentration flow cell, Energy Environ. Sci., 10, 4, pp. 1003-1012, (2017)
  • [3] La Mantia F., Pasta M., Deshazer H.D., Logan B.E., Cui Y., Batteries for efficient energy extraction from a water salinity difference, Nano Lett., 11, 4, pp. 1810-1813, (2011)
  • [4] Post J.W., Hamelers H.V.M., Buisman C.J.N., Energy recovery from controlled mixing salt and fresh water with a reverse electrodialysis system, Environ. Sci. Technol., 42, 15, pp. 5785-5790, (2008)
  • [5] Veerman J., Saakes M., Metz S.J., Harmsen G.J., Reverse electrodialysis: evaluation of suitable electrode systems, J. Appl. Electrochem., 40, 8, pp. 1461-1474, (2010)
  • [6] Mei Y., Liu L., Lu Y.-C., Tang C.Y., Reverse Electrodialysis chemical cell for energy harvesting from controlled Acid Base neutralization, Environ. Sci. Technol., 53, 8, pp. 4640-4647, (2019)
  • [7] Zhang Z., Wen L., Jiang L., Nanofluidics for osmotic energy conversion, Nat. Rev. Mater., 6, 7, pp. 622-639, (2021)
  • [8] Chen W., Zhou K., Wu Z., Yang L., Xie Y., Meng X., Zhao Z., Wen L., Ion-concentration-hopping Heterolayer gel for ultrahigh gradient energy conversion, J. Am. Chem. Soc., 146, 19, pp. 13191-13200, (2024)
  • [9] Wang Y., Jiang H., Zhang Y., Song Z., Chen Z., Sui K., Fan W., Qi P., Highly-stable gradient poly(anion-π) hydrogels with superior salt-tolerant property for giant osmotic energy harvesting, Chem. Eng. J., 481, (2024)
  • [10] Song G., Chen C., Zhan Y., Pan X., Wu Z., Peng P., Chen G., Peng F., Self-adhesive ionic cable derived from natural bark as osmotic energy generator, Nano Energy, 131, (2024)